Supervised Adversarial-Attack Classification

Kumar Kallurupalli (kksreddy @stanford.edu)“! Nicholas Tan (ntan2012@stanford.edu) " B
Shalini Keshavamurthy (skmurthy @stanford.edu) “*

Abstract

Deep neural networks are very sensitive to ma-
nipulated inputs. Adversarial examples slightly
modify the source image in such a way that it
will be classified incorrectly by a machine learn-
ing classifier. We trained an extended VGG19
model on a subset of ImageNet data to study a
system that detects when such an attack is oc-
curring. We demonstrate the ability to extend an
adversarial-attack classifier trained to detect one
form of attack on detecting other types of adver-
sarial attacks.

1. Introduction

As machine learning tasks have gained traction and
widespread use in high-impact fields, the topics of secu-
rity and safety have been raised as a key concern during the
design of any deep learning architecture. This sentiment
is echoed in particular by the vulnerabilities of deep neu-
ral networks to adversarial attacks, which are maliciously
manipulated inputs that cause degradation in the original
intended performance of the system. Oftentimes, the output
arising from such an attack may be designed to produce
any chosen outcome, which gives bad actors an opening to
control the system in harmful ways. Thus, our goal is to
implement a robust and lightweight module to detect and
classify such attacks, yet not detract from the intended per-
formance of the application. The input to our model is an
image. The model acts as a binary classifier. The output de-
termines if the image is a “clean” image or an adversarial”
one.

2. Related Work

The current literature shows many examples and implemen-
tations of successfully defending against adversarial attacks.
Kurakin et al. (Kurakin et al., 2016) has trained the Incep-
tion v3 model on ImageNet on an augmented dataset of
both clean and adversarial images to make their model more
robust to adversarial attacks. Ian Goodfellow et. al. (Good-
fellow et al., 2015) has developed a fast way to generate
adversarial example images, and training the application

(a) Sports Car

B S

(d) Tabby Cat

d

(e) Boxer (f) Egyptian Cat

Figure 1. Sample images from the ImageNet dataset.

model on these adversarial examples improves the perfor-
mance of that model in the face of adversarial attacks. Xi-
aoyong Yuan et. al. (Yuan et al., 2017) studies the landscape
of state-of-the-art adversarial attacks in various machine
learning fields and proposes various solutions for address-
ing them, from adversarial detection to retraining to input
reconstruction, etc. We have borrowed some of the methods
from these papers for our work in adversarial defense and
adversarial image generation.

3. Dataset

We used the ImageNet dataset (Deng et al., 2009) for train-
ing and classification of clean and adversarial images. To
reduce the computational load of training on such a large
dataset in the time parameters given, we used a subset of
ImageNet to concentrate our efforts on. Figure 1 shows
some sample images. We treat the images in this subset as
"clean’ images and label them as such.

Preprocessing images - We normalized the images by sub-
tracting the mean from the RGB images. Since the images
of ImageNet are of different sizes, we reshaped them into
256 x 256 resolution.

Attack methods - There are a number of methods for ad-
versarial attacks for images - Gradient based attacks, score
based attacks, decision based attacks, etc. For the purpose
of generating adversarial images, we have used 2 gradient

Supervised Adversarial Attack Classification

based attacks - FGSM and DeepFool and 1 decision based
attack - Contrast Reduction.

Fast Gradient Sign Method (FGSM) attack - This is the
classical method of creating an adversarial attack. It is
a gradient-based white-box attack. Attacks are generated
using the equation below -

X% = X 4 esign(A,J (X, Yirue)) (M

where X is a clean image,

XV ig the generated adversarial image,

Yerue 1S the true label of the image,

e is the size of perturbation, specified in terms of
pixel values in the range [0,255],

J (X, Ytrue) is the cost function used to train the model.

DeepFool attack - This is another white box iterative ap-
proach in which the closest direction to the decision bound-
ary is computed in every step to update the image. It is
equivalent to minimizing the orthogonal projection of the
data point onto the affine hyperplane which is the decision
boundary between the various classes. At each iteration i,
f is linearized around the current point x; and the minimal
perturbation r; of the linearized classifier is computed as
arg min,_||7;||2 subject tof (x;) + Af(x;) i = 0(2)

i

Contrast attack - This is a decision based attack. It reduces
the contrast of the image until it is misclassified.

Adversarial image generation - Figure 2 shows an exam-
ple of clean images and adversarial images created with
each of the 3 attacks. A dataset of images was compiled
using FGSM attack on our clean Imagenet-based dataset.
These images were used for training our binary classifier for
Adversarial Attack Detection. We had approximately 34K
clean images and 34K adversarial images from each attack.
We split the dataset as 92%, 5%, and 3% for the training,
validation and test set.

We also created three more adversarial datasets of a smaller
size (1000 images each) to investigate the capability of
the adversarial classifier to extend its predictive abilities
to other attacks from other algorithms. We used the three
above attacks: DeepFool attack, Contrast attack, and FGSM
on another randomly selected set of images from Imagenet.

4. Methods

In order to not detract from the intended performance of
the original application, we elected to build a pre-network
that can act as a filter against malicious inputs. This deep
neural network may be executed before application-level
prediction to prevent bad incoming data from ever entering
the application network and alert the user that tampering

(a2) With FGSM attack

(bl) Clean image - mushroom (b2) With Contrast attack

(c1) Clean image - mushroom (c2) With DeepFool attack

Figure 2. Sample images from the ImageNet dataset and their cor-
responding images with FGSM, contrast and DeepFool attack.

may have occurred. The functional trade-off of this design
choice is the added run-time that it takes to evaluate an
image using the pre-network. Other defensive methods exist
such as injecting global noise into the input image to derail
any targeted attack, but such methods may affect the original
performance of the application itself. To enable our strategy,
a supervised learning approach was implemented. The two
datasets (clean and adversarial generated as mentioned in the
previous section) were used to train a deep neural network
to perform binary classification.

Transfer learning is a popular approach in deep learning
where models trained for a one task are reused for a similar
task. The pre-trained models provide good initialization
weights to build, train, and extend the model specifically for
the new task. This technique is used to accelerate model
development.

For our project, we used transfer learning to extend the
VGG16 and VGG19 network to perform binary classifi-
cation on adversarial and clean images. The pre-trained
VGG16 and VGG19 network available is for the image clas-
sification problem, attempting to determine from which set
of pre-determined classes any given image came from. In
the context of transfer learning, a pre-existing network’s
weights may be reused and re-purposed given a similarity
in utility of extracted low level features for a multitude of
tasks. In particular, we made the assumption that the weights
learned for image classification by VGG16 and VGG19 can
be used for adversarial attack classification as well.

Supervised Adversarial Attack Classification

5x5 conv, 300
FC 1024
FC 1024

FC 80
Output

25x25 conv, 80
15x15 conv, 160
5x5 conv, 500

Figure 3. Custom 7 layer architecture

Loss function - We chose cross entropy, given by equation 5.
The loss function measures the probability error in discrete
classification tasks in which each class is independent but
not mutually exclusive.

o(z) =1/(1+e™7) ©)
y=o(z))
loss = ylog(y) + (1 — y)log(1 - g))

where y is the true class label, §is the predicted class label,
x is the logits.

Evaluation metric - We chose accuracy as our metric for
evaluation. It is defined as the number of correctly classified
samples divided by the total number of samples used for
classification. The baseline accuracy for random guessing
is 50%.

5. Experiments and Results

Architecture search - We experimented with 3 different
architectures. VGG16, VGG-19 and a custom 7 layer neural
network. We began with smaller neural networks to study
if we can train them to classify clean and adversarial im-
ages. First, we trained a custom neural network as shown
in Figure 3 for binary classification. However, we found
little success with this model. The results were around 55%,
even after increasing the learning rate and tuning hyperpa-
rameters. Next, we chose the classic VGG16 architecture
with one additional layer of 1 node. We used its pre-trained
weights to start with due to the network’s relatively shal-
low layer-set compared to other architectures (Simonyan &
Zisserman, 2014). If this smaller network could perform
the adversarial classification task to an acceptable level, our
solution would be more lightweight. However, retraining
the VGG16 network also yielded low accuracies, around
50%. We finally changed the architecture to use a pretrained
VGG19 as well as extended the network by adding four
layers. Our final result is based on the extended VGG19
architecture as shown in Figure 4.

The four additional layers we added each composed of a
fully connected layer, followed by dropout. The layer sizes
went from 4096 to 3000, 3000 to 2000, 2000 to 1000, and
finally 1000 to 1. We used a sigmoid activation (equations
3.,4) in the final output layer to perform binary classification.

8 13 |8 B & R & B & 5 |5 B & B & B e |8 |sl &l |zl e
g1 12l 12l dzl L2l gl L2 12 fel L2 8L LE] Btz L2l 2l 18l el 18] 18] 5] 2] [2
g

218 2 = (g lgl g g lg g g B g 8l (g lm||E| | E IR E
mmmmmmmmmmmmmmmm

Figure 4. Extended VGG19 architecture

Each of the fully connected layers had ReLU activations.
The hidden layer sizes were chosen to be in a middle-ground
range between the number of activations (4096) and the final
node (1) so minimal information loss would occur between
layers.

Hyperparameter tuning - During training, we saw the
training and validation accuracies oscillate between having
a high bias and high variance as shown in Figure 5. Because
we do not have a clear understanding of how well adver-
sarial detection should work on our subset of ImageNet
as this dataset has not been trained on before - this makes
estimating the Bayes error difficult. However, we were
able to optimize the bias-variance tradeoff by comparing
the training and validation accuracies. To reduce high bias,
we increased the number of layers in the network and their
associated sizes. To reduce high variance, we used dropout
techniques and increased the dataset size with augmentation.

We saw good performance on the task of classifying adver-
sarial and clean images. Our network was able to overfit a
small preliminary dataset of 1000 images and achieved a
training accuracy of 100%.

Hyperparameters Values
keep_prob 0.1,0.2,0.3,0.5,0.9
Minibatch size 10,64,100
Learning rate 0.1, 0.01, 0.001
x Optimizers SGD, RMSProp
#layers frozen, [¢ 5,10,15
#layers retrained, [, 10,5
#FC Layers added, [2,34

Table 1. Hyperparameter values used for training the modified
architecture.

Regularization using dropout - Dropout layers provide a
regularization effect and can be used to decrease variance in
the training. We tried combinations of keep-probabilities to
tune the network and trade-off between overfitting / under-
fitting.

Adding more layers - Although using dropout improved
the variance, we began to see the accuracy decrease nomi-
nally. This suggested that the existing architecture was not
sufficient to represent the complexity of the data. So we
added a combination of fully connected layers on top of the
VGG16 and VGG19 architectures to see improvement in

Supervised Adversarial Attack Classification

accuracy in the cases of high bias.

Data augmentation - We also tried various techniques to

increase the size of our dataset. We tried scaling images,

cropping images, zooming, image flipping and rotations.

nnnnnnnnnn

Figure 5. Training and validation with different hyperparameters;
left - high bias; right - high variance

Figure 6. Training and validation accuracies (Best result)

Metric Data/Value
Classifier trained on | FGSM + clean data
Training Accuracy 93.7%
Validation Accuracy 82.2%
Test Accuracy 79.2%

Table 2. Results on the training and validation data

‘ Attack ’ Test Accuracy
FGSM (different distribution) 67%
DeepFool 68.12%
Contrast 56.73%

Table 3. Results on the test data
Evaluation on disparate attacks - We have also evaluated

our classifier on various other attacks. We generated a test
dataset using FGSM but on a disparate set of images from
Imagenet. The classifier achieved an accuracy of 67% which
was lower than the original performance due to the differ-
ence in input distributions. We also generated a test dataset
using the DeepFool attack algorithm. This achieved a simi-
lar accuracy to the previous FGSM result, with 68.12% ac-
curacy. Lastly, we generated a test dataset using the contrast
attack. It performed worse with 56.73% accuracy. Because
this attack was fundamentally different than the previous

tabby Egyptian_cat tiger_cat Iynx
B -
4 .
Adversarial Image Egyptian_cat tabby tiger_cat iy
e Ratir: 12
et | .
e . *.
T
W 2
I L

-0.006 -0.004 -0.002 0.000 0.002 0.004 0.006
SHAP value

Figure 7. Explainability results for clean (first row) and adversarial
(second row) images of the same class "tabbycat’ sample.

two, which are both gradient-based attacks, our model was
not able to generalize its performance to this case.

6. Using Explainability

In order to understand the way in which the FGSM attack
affects our images, we explored one of the open source ex-
plainability tools, SHAP. Lindberg et al. (Lundberg & Lee,
2017) presents a unified framework for interpreting model
predictions called SHAP (Shapley Additive Explanations).
SHAP assigns each pixel a correlation with the predicted
label. These scores are achieved by accumulating gradients
when moving in a straight-line path from the datapoint to a
baseline like a black image.

1
IntegratedGrads; (z) == (z; —2}) X / IF(z' +ax (z—1z')) x da/dx;
a=0
(©6)

Figure 7 demonstrates an example on one of the class sam-
ple. When the clean image is given to the classifier, it is
correctly identified as the ’tabby’ class. The red pixels on
the face indicate that they were responsible for weighing the
predictions towards the right class. Most of the other pixels
were lighter with very few blue pixels indicating a neutral
influence. For the adversarial image of the sample, the blue
pixels are more prominent in the face region pushing the
predictions towards the egyptian cat class even though the
next best prediction has more red pixels in the face region!
Although this tool does give some insight to which pixel
might have influenced the classification, it is very hard to
interpret the classification and its explainability result for
every sample.

6.1. Explanations for Adversarial Images versus
Original Images

We noticed that adversarial examples tended to produce ex-
planations that were visibly different from the explanations
that original images produced for their predicted labels.

Supervised Adversarial Attack Classification

Bald Eagle Classified as Bald Eagle Classified as Kite

& =

Original Image Normal Image Adversarial Image

Figure 8. Explainability results for the predicted class for the clean
image and its adversarial counterpart

Figure 8 shows an example of a sample image where the
explanation for the predicted label of the adversarial exam-
ple has a larger number of pixels with a negative correlation
towards the predicted label than the original image does for
it’s predicted label. The pixels for the explanation were also
more scattered than the pixels for the original image.

6.2. Methods

The explanation for the most likely class was overlayed on
top of the original images and the FGSM-generated adver-
sarial images as shown in 9. Then the data was split into
train, validation and test sets.

Figure 9. Training Examples used by the Binary Adversarial Clas-
sifier

For this approach we re-used the VGG19 based binary clas-
sification network i.e. all the layers of VGG19 barring the
penultimate layer after which two fully connected layers
with a ReLu activation were added followed by the output
layer with a sigmoid activation. The first fully connected
layer took the VGG16 activations from 4096 nodes to 1000
nodes. The loss function we chose was cross entropy, given
by equation (5) just as we did in our prior approach.

6.3. Model Tuning

The extended VGG19 model was tuned for different settings
of 41 and /32 and the learning rate for the ADAM optimizer.

‘ Hyperparameters ‘ Values
B1 0.9,0.92, 0.94
82 0.99,0.999,0.9999
o 107%,107°,107°

Table 4. Hyperparameter values used for training the modified
architecture.

Learning Rate Decay was also implemented for training
the algorithm simply by dividing the learning rate by the

number of epochs processed.

6.4. Results

The results for this approach are published in Table 5. The
accuracies for the training, validation and test (adversarial
images produced by algorithms not used to produce training
data) sets are shown.

‘ Test Dataset | Accuracy

‘ Dataset | Accuracy ‘

Training 85.3% FGSM 06.1%
idati DeepFool 65.7%
Validation 79.8% = o
Test 67.5% ontrast 15%

Table 6. Accuracy values for
each of adversarial attack
algorithms

Table 5. Results of training the
model with explanations

The results are similar to the accuracy generated by the prior
approach. Explainability didn’t lead to a lift in predicting
the accuracy over the entire set.

As seen in Table 6, this approach leads to better results
on adversarial images generated using the contrast shift
algorithm. This seems to suggest that by looking at the
explanation we can abstract out some commonality between
the different adversarial attacks. Note that these accuracies
in each of the test sets also includes the original image from
which the adversarial attack was generated.

7. Conclusion and Future Work

The goal of our project was to classify adversarial images
from the clean images. We used 3 different attacks to gen-
erate the adversarial images. We experimented with few
architectures, tuned the hyperparameters, used an open-
source tool SHAP for understanding which features play
an important role in the classification process. The training
and validation accuracies are 93.7% and 82.2% respectively.
The accuracies for classifying adversarial attacks (FGSM,
DeepFool, Contrast Reduction) trained on a different adver-
sarial attack (FGSM) are around 56% and 67%.

Our next steps would be to include more data from the
ImageNet dataset, train on deeper networks like ResNet50
and Inception models and tune the parameters for better
results. We would also like to extend our classifier to learn
more than one class of adversarial attack. Specifically, we
would extend the model from “clean” vs “adversarial” to
“clean” vs “FGSM” vs “Deepfool” vs “Contrast.” These
datasets could be generated and labelled and trained on with
more time and resources.

Supervised Adversarial Attack Classification

8. Contributions

All 3 authors contributed equally in architecture selection,
training and testing the model.

9. Code
Github Link

References

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

Goodfellow, Ian, Shlens, Jonathon, and Szegedy, Christian.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations, 2015.
URL http://arxiv.org/abs/1412.6572.

Kurakin, Alexey, Goodfellow, Ian J., and Bengio,
Samy. Adversarial machine learning at scale. CoRR,
abs/1611.01236, 2016. URL http://arxiv.org/
abs/1611.01236.

Lundberg, Scott M and Lee, Su-In. A unified approach to
interpreting model predictions. In Guyon, I., Luxburg,
U. V,, Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 30, pp. 4765-4774. Curran As-
sociates, Inc., 2017.

Simonyan, Karen and Zisserman, Andrew. Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014. URL http://arxiv.
org/abs/1409.1556.

Yuan, Xiaoyong, He, Pan, Zhu, Qile, Bhat, Rajendra Rana,
and Li, Xiaolin. Adversarial examples: Attacks and
defenses for deep learning. CoRR, abs/1712.07107, 2017.
URL http://arxiv.org/abs/1712.07107.

