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Abstract

Image super-resolution, or generating a high-resolution image from a low-
resolution one, is a popular problem within deep learning, but has not yet been
applied widely to medical images. We seek to develop a technique for MRIs
that could produce high-resolution scans from low-resolution ones, which would
shorten MRI scanning time for vulnerable patients. Basing our model off of SR-
GAN, a generative adversarial network that prioritizes features over pixel-to-pixel
comparisons, we find that our preliminary results preserve some interesting features
and show promise for future work.

1 Introduction

Because MRI (Magnetic Resonance Imaging) does not emit X-rays or other radiation, it is the
preferred scanner for many medical evaluations, particularly when frequent imaging is necessary
or when examining soft tissue differentiation or brain trauma. However, the typical scan requires
patients to lie still inside the scanner for half an hour or more, which may be difficult, particularly for
pediatric, claustrophobic, or very ill patients [1]. In order to allow a physician to diagnose cancer and
determine its stage, the MRI scan must be of a sufficiently high resolution. Therefore, there may be a
trade-off between quality of the scan and the patient’s comfort during the process.

Working with Dr. Heike Daldrup-Link and Dr. Anuj Pareek, we hope to develop a deep learning
algorithm that can reconstruct high-resolution images from rapidly acquired low-resolution data.
This would shorten overall scanning time, thus increasing hospital workflow and decreasing patient
discomfort. Using high- and low-resolution MRI scans from sixteen patients, we used a generative
adversarial network (GAN) based off of the SRGAN network developed by Ledig et. al [2]. We
modified this model to work with the single color channel of our data; to incorporate actual low-
resolution data, instead of artificially deteriorating high-resolution images; and to incorporate the
sequential nature of an MRL

2 Related work

Our project falls under two larger problems: the application of deep learning to medical image
analysis, and algorithms for image super-resolution. Although the former is still a new field, Litjens
et. al. provide a fairly comprehensive survey on deep learning techniques in medical image analysis
[3]. Patient privacy makes large datasets difficult; therefore, most of the literature focuses on
convolutional neural networks (CNNs) and uses transfer learning due to the smaller datasets available.
For instance, Bien et. al. uses AlexNet to diagnose different knee injuries through about 1,400 MRIs
[4], while Fauw et. al. applies a 3D-CNN to screen head CT images for neurological damage [5]. As

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



of the survey’s most recent publication (June 2017), there were no peer-reviewed articles applying
GANS to medical images [3]. However, GANSs offer a promising opportunity of research due to their
unsupervised nature; due to patient privacy laws, there is much more readily available unlabeled
medical data than labeled, and unsupervised methods could take advantage of this fact.

On the other hand, image super-resolution—increasing the size of a small image while minimizing
its drop in quality—is a popular field within computer vision and has applications to a wide variety
of fields. Traditional super-resolution techniques use interpolation, but this fails to preserve the
sharp edges that are necessary for medical imaging [6]. SRCNN, the first deep learning method to
outperform traditional ones, is a simple CNN with three convolutional layers, but is very sensitive to
hyperparameter changes [7]. VDSR is a deeper network that utilizes VGG-Net [8]. Finally, SRGAN
uses a residual network (SRResNet) as the generator and bases its discriminator off of VGG-Net [2].
We ultimately chose SRGAN due to its unique loss function, discussed further in section 4.

3 Dataset and Features

This dataset was provided by Dr. Heike Daldrup-Link and Dr. Anuj Pareek, and contains paired high-
and low-resolution scans from 16 patients. Each scan is composed of several hundred “slices” of
varying thickness. Images were dicom (.dcm) files, which each consisted of an array of gray-scale
pixels (512 x 512) with 1 channel, as well as meta-data about the scan and the patient.
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(a) Low-resolution scan. (b) Corresponding high-resolution scan.

Figure 1: Low- and high-resolution images, paired through our preprocessing. The high-resolution
scan appears thinner because each scan contains more images, and thus each image features a thinner
slice.

For each patient, these scans were obtained by sequentially low-resolution MRIs scan less thoroughly
and, thus, have thicker and fewer slices. We used the meta-data to pair each low-resolution scan with
its best-fitting high-resolution scan by minimizing the Euclidean distance between the position of the
patient at each scan. Altogether, we created 8479 image pairings.

4 Methods

Image super-resolution techniques typically focus on minimizing MSE (mean-squared error) between
the pixels of the two images:
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However, like any element-wise comparison, MSE can be very sensitive to small shifts in the image.
This is a large concern for our problem for two reasons. Our paired images showed noticeable
differences in the pixel values and placement (see Figure 1) due to the slight shifts in patient

positioning between the two MRIs. Additionally, the edges of an MRI, which detect different organs,
bones, tissues, etc., are more important for radiologists than the actual pixel values.

As a result, we chose to base our work after SRGAN, which focuses more on feature representation
than pixel value in its loss function. Instead of MSE, SRGAN defines their content loss as the
Euclidean distance between the feature representations of a reconstructed image G, (I7F) and its



reference high-resolution image I7%:
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where W; ; and H; ; are the dimensions of the respective feature maps within the VGG network and

@5 refers to the feature map after the j-th convolution before the i-th max-pooling layer within the
VGG19 network.

The adversarial loss is

N
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and the perceptual loss is a weighted sum of adversarial and content loss:
PR =lyee + 10 3gen

For its generator, our GAN utilized SRResNet, a network with 16 residual blocks, each consisting of
2 convolutional layers with same padding and random normal initialization with a standard deviation
of 0.02, followed by a batch normalization layer each. To improve the generator before adding the
discriminator and to look at a baseline model, we trained the MSE-based SRResNet with our data
prior to training the actual GAN. For our discriminator, we used a model similar to VGG-19, with
alterations for our specific dataset (Model 1).
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Figure 2: Original architecture of SRGAN [2], modified for our dataset for number of channels,
dimensions, and low-resolution data (not constructed through bicubic downsampling, as the original
model does). Note that, due to the padding, the dimensions of the generated output were the same as
the input. This enabled us to use the generator as a baseline model for image super-resolution.

MRIs have an additional feature in that they are sequential; therefore, a slice’s neighbors may
contain useful information. Therefore, we ran a similar model, but with our “ground truth” input
as a 3-channeled image containing a slice and its neighbors (Model 2). 6008 image pairings (one
low-resolution slice—its best-matching high-resolution slice) were used to train Model 1 and 2741
were used for evaluation. Due to memory constraints, 907 image pairings (one low-resolution slice—its
best-matching high-resolution slice, along with its neighbors) were used to train Model 2 and 749
were used for evaluation.

Ledig et. al. ran SRResNet over 100 iterations and SRGAN over 2000 iterations, which took several
weeks—a process that would have cost thousands of dollars if we used an external service. We did not
have the computational resources to do this, so all results are in a preliminary stage.
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Figure 3: Starting from the left: a low resolution slice, the corresponding generated image from
SRResNet, the generated image from SRGAN, and the closest matching high resolution slice using
Model 1.

S Experiments, Results, & Discussion

5.1 Training

All networks were trained with the dataset described in Section 3. Due to GPU access constraints,
experiments were affected in a number of ways. To avoid memory overflow constraints, a batch size
of 1 was used. For training of Model 1, 11 patients’ scans were used (6008 paired scans, or 12,016
512 x 512 x 1 images in total). The SRResNet for Model 1 was trained with 1 epoch over the dataset,
and SRGAN was trained with 5 epochs. 5 patients were used for evaluation of these networks. For
training of Model 2, due to storage constraints from having double the number of images per training
example as a result of using the neighbors for the target image, 2 patients’ scans were used. The
SRResNet for Model 2 was trained with 5 epochs over the dataset and SRGAN was trained with 20
epochs. 1 patient was used for evaluation of these new networks.

5.2 Parameters

Adam optimization was used for training of all networks, with 5; = .9 and 2 = .999. A fixed
learning rate of 10~* was used for SRResNet and SRGAN used two learning rates, 10~* and 1075,
which were switched halfway through training. These hyperparameters were chosen to match those
tested by Ledig er. al. [2]. Given that SRGAN is such a deep network, it is less sensitive to
hyperparameter changes.

5.3 Evaluation

As the goal of this paper is to provide physicians with interpretable and clear images, our evaluation
metrics include mean opinion score (MOS) and, as a rough approximation for feature preservation,
MSE. Due to time constraints, MOS has not yet been evaluated, and is to be done by radiologists in
the Stanford School of Medicine. MSE values are shown below in Table 1.

Model 1 Model 2
SRResNet | 5.39 x 107 3.90 % 10°
SRGAN | 4.73 %107 3.46 % 10°

Table 1: MSE for each model, evaluated on both networks. We use MSE as a rough approximation
for feature preservation; MOS is a more important metric, since ultimately radiologists will be the
users of this model, and since we designed our model to minimize VGG loss (feature loss).

5.4 Discussion

As seen in the results of Table 1, SRResNet had greater MSE than SRGAN for both models. This
was also shown in Ludig et al. and is expected in this context as well as it is a simpler model [2].
Between Model 1 and Model 2, Model 2 had a much lower MSE, possibly a result of training with a
smaller portion of the data for a greater number of iterations, and the smaller evaluation size.
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Figure 4: Starting from the left: a low resolution slice, the corresponding generated image from
SRResNet, the generated image from SRGAN, and the closest matching high resolution slice with its
neighbors using Model 2.

Figure 3 and Figure 4 are examples of the resulting images we obtained by processing slices through
SRResNet and SRGAN, for both models tested. Using Model 1, the results from SRResNet and
SRGAN largely mirror the low resolution, but become slighter blurrier as they have more noise
around the edges. SRGAN improves upon SRResNet visually by reducing the noise or blur in the
image. The images from SRGAN and SRResNet also still maintain most of the coloring of the
original low resolution slice. We also observe a small detail at the bottom of the skull in the example
in Figure 4 where the region starts to brighten and stand out more in the image, as appears in the HR
slice. Using Model 2, the results are noticeably different, where both SRResNet and SRGAN results
start to learn a different coloring to match some of the darker features of the HR images, as well as
start to pick up finer details.

6 Conclusion & Future Work

We were heavily restricted by computational resources, particularly access to GPUs, storage, and
training time. To determine how effective our model is for image super-resolution would require
much longer training. Nonetheless, our preliminary results for SRResNet and SRGAN show an
opportunity for improvement, and we are excited to see results after more extensive testing.

Future work would focus first and foremost on increased computational power, storage, and time
training. Due to patient privacy issues, as well as monetary and time restrictions, we were heavily
restricted in our access to GPUs. We would also research other ways to incorporate the sequential
nature of MRIs: recurrent neural networks, 3D CNN:ss, or research into video interpolation techniques.
Finally, in order to reduce our computational workload, we would begin our model with an image
detection portion in order to locate the relevant scan area. This would allow us to reduce the
dimensions of the image before feeding it into the GAN.

7 Contributions

Andrew and Angela contributed equally to the project, including the data preprocessing; the generator,
discriminator, and overall incorporation into a model; the model evaluation; and the project and
poster.

A GitHub for this project with our implementations and trained model weights can be found at
https://github.com/narcomey/mri-superresolution.
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