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Abstract

Gravitational lenses provide a unique observational tool for probing the structure of dark
matter in the universe. By studying the features of galactic images that have been distorted by
gravitational lenses, physicists can perform calculations to infer the underlying composition of
matter that generated this distortion. These calculations are involved and costly. Here, we use
deep CNNss to perform the same inference. We achieve highly accurate predictions ~1 million
times faster than standard physics computations, and we generate a full covariance matrix of
uncertainties on our predictions. This presents a valuable rapid inference technique for dark
matter research on next-generation sky surveys.

1 Introduction

One of the profound predictions of Einstein’s general theory of relativity is the bending of light’s
path by sufficiently massive objects. When the mass of the object is on the scale of a galaxy, light
from a distant source can be bent to produce what is known as an Einstein ring (see Figure 1). This
effect - known as strong gravitational lensing - has become a powerful tool in modern observational
cosmology. Images of gravitational lenses enable us to infer features about the matter distribution that
generated them, even if we cannot see the matter itself. This makes lensing measurements uniquely
suited to probing the structure of dark matter, a form of matter that is believed to interact only weakly
with photons but compose around 85% of the matter in the universe [15]. Better understanding the
distribution of dark matter will help set constraint on the universe’s early evolution, allow us to better
understand dark matter’s role in the formation of galaxies, and help us probe particle physics beyond
the standard model [1].

Unfortunately, the calculations required to infer these parameters are computationally costly [12].
Before next-generation sky surveys such as LSST, Euclid, and WFIRST come online in the next 2-3
years, we need efficient, accurate tools to predict the parameters of strong gravitational lenses. Addi-
tionally, for these prediction tools to be scientifically viable, we must be able to present meaningful
constraints on their uncertainties. In this paper, we use deep Bayesian convolutional neural networks
to achieve state-of-the-art predictions on the salient features of gravitational lenses, along with a full
covariance matrix of uncertainties. The model is trained on strong gravitational lensing images and
outputs a series of six parameters that describe the Singular Isothermal Ellipsoid density profile of
the underlying mass distribution. [4].

2 Related Work

2.1 Graviational Lensing Models

There is a large collection of modeling software currently used for gravitational lensing [12]. The
majority requires some level of expertise in the subject to operate, and can take on the order of
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days or weeks to generate accurate predictions for a lens. The techniques often use either a Markov
Chain Monte Carlo or a downhill optimization strategy to fit the parameters to the lensing image.
More recent work has shown that convolutional neural networks can accurately identify images
containing gravitational lenses [11], and can even infer the underlying parameters of the these
networks [7]. Efforts have also been made to obtain uncertainties on these predictions [13], although
they are limited to the diagonal entries of the covariance matrix. Work by Hezaveh et al. has found
similar performance across various model architectures including Inception-v4, Alexnet, and Overfeat
[7]. Their experiments have shown that convolutional networks can achieve prediction accuracy
competitive with other sophisticated modeling techniques while taking fractions of a second for a
prediction.

2.2 Bayesian Deep Learning Models

In the past two years, Bayesian deep learning models have been proposed as a mean of modeling the
full uncertainty in computer vision tasks [9]. These are heteroscdastic models that seek to capture the
two main sources of modeling uncertainty: aleatoric uncertainty - the uncertainty stemming from
inherent noise in the observation - and epistemic uncertainty - the uncertainty arising from our choice
of the model and its parameters. Extending these models to capture the full covariance matrix of
the output parameters requires finding an efficient mapping between the outputs of the network and
the space of positive definite matrices. This issue has been explored beyond the framework of deep
learning, and a number of useful parametrizations have been developed [8]. Additionally, some recent
work in convolutional neural networks has also explored how to efficiently learn the covariance of
pixels in an image [3].

3 Dataset and Features

We have gathered a training set of 100,000 high-quality, labeled images of gravitational lenses (Figure
1). These images are generated using background galaxy images from GalaxyZoo [2] and GREAT3
[14], along with simulations of gravitational lensing events developed at Stanford/SLAC [7]. In
addition, we have a held-out test set of 15,000 images.

In order to produce realistic images that more accurately represent those captured by a telescope, and
to generate a larger set of images for training, we implement a data augmentation pipeline involving
the following augmentations: (1) adding Gaussian noise to the images associated with our detector,
(2) adding masked pixels to the images, (3) applying a point spread function associated to the detector,
(4) adding Poisson shot noise associated with the intrinsic statistics of measuring a finite number of
photons, (5) translating the center of the lens. The difference between the original images and the
modified images can be seen in Figure 1. Finally, we whitened the outputs such that they had mean
zero and variance one on the training set. Before reporting our results we transformed the outputs of

our model back into their original scale.
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Figure 1: A picture of the strong lensing dataset before (left) and after (right) the data augmentation
process.

4 Methods

The model architecture used in this work is a modified version of Alexnet [10] that includes both
batch normalization and dropout after each convolutional layer (see Figure 2). Building off of the



Bayesian modeling techniques developed by Kendall et al. [9], we design a heteroscedastic model
built to capture the full covariance of both the aleatoric and epistemic uncertanties. The aleatoric
uncertanty is independent of our choice of model, so we treat it as a prediction of our network and
incorporate it into our loss function as follows:

L(Yns Gns Xn) = %(yn - gn)TEr_Ll(yn —Gn) + % log |E,| ey
where v, is the true value of the n' example, 7, is the predicted value, 33,, is the predicted covariance
matrix, and |X,,| denotes the determinant of the covariance matrix. We are modeling six parameters
of the Singular Isothermal Ellipsoid density profile; therefore our model outputs the six values of g,
and the twenty-one values required to describe the degrees of freedom of ¥, for each image. In order
to map from the twenty-one covariance matrix outputs of our model to the space of positive definite
matrices we use a log-Cholesky decomposition. In this framework, our twenty-one parameters map
to the twenty-one nonzero values of the six by six lower traingular matrix L,,. Six of the twenty-one
parameters are considered to be log predictions of the diagonal values of L,,, therefore forcing L,, to
have positive diagonal values. The remaining fifteen parameters give the off-diagonal values. Given
L we construct the matrix I1,, = L,, LT It can be shown that IT is guaranteed to be positive definite
and the mapping between L,, and II,, is unique [8]. If a matrix is positive definite then not only is it
invertible, but its inverse is also positive definite. This allows us to take II,, = ¥, ! and define a more
numerically stable loss function:
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Figure 2: A graphic describing our modified implementation of Alexnet [10]. Dropout occurs before
each convolutional layer, and batch normalization is conducted after each convolutional layer.

We are also interested in capturing the epistemic uncertainties - the uncertainty associated with errors
from our choice of network and its parameters. To do so we will make use of previous work in the
development of Bayesian Neural Networks [5] and take an expectation maximization approach to
marginalizing over the weights. If we choose a variational distribution ¢(w) for our weights such
that:

q(w;) = w; - Bernoulli(p) 3)

we can then sample from this marginalized distribution by using Monte Carlo integration (that is,
setting weights to 0 in accordance with the Bernoulli distribution). The advantage of this choice
of varirational distribution is that it exactly mimics dropout, and therefore training our network
to estimate epistemic uncertainties is equivalent to simply training our network with dropout. At
test time we can then estimate the epistemic uncertainties by calculating the prediction on a single
input multiple times and conducting dropout each time. This is equivalent to sampling from the
marginalized distribution of our test example. In this framework, the dropout rate must be tuned so
that the prediction of the epistemic uncertainty matches what is seen in the data.

5 Results

We trained the models with an initial learning rate of 10~°, manually adjusting the learning rate as
the training progressed. We found that a mini-batch size of 64 allowed the network to learn quickly



while allowing for relatively a smooth loss function. We trained using the Adam optimizer with the
standard choice 57 = 0.9, B2 = 0.999. The momentum for our batch norm was also the standard
value of 0.99. In order to understand the effect of the dropout rate we tested three separate rates: 0.02,
0.03, and 0.1. The best results were achieved with a dropout rate of 0.03 where after training for 40
epochs, we obtained the 68% error interval shown in table 1. We chose this error metric to be able to
compare our results to work by Hezaveh et al. [7]. Training for longer should allow us to achieve
even lower test error.

Table 1: 68% errors on Singular Ellipsoid Density profile parameters

| Or €x €y x y “E
Hezavehetal. [7] | 0.03 0.04 0.05 0.06 0.06 -
Ours 0.07 0.11 0.12 026 029 0.37

Comparing the error intervals show that our model has similar accuracy in its predictions both to
previous deep convolutional strong lensing models and downhill optimization models. In terms of
performance, our model takes 2 seconds to make predictions on 1000 images. This represents a
~ 1,000, 000x speed-up over standard computations [12]. No significant overfitting to the training
set seems to have occurred: the performance on the training set is identical to what is shown in Table
1.

We now consider metrics to quantify the validity of our predicted covariance matrix. Figure 3 plots
the confidence intervals on each parameter estimate (given by the diagonal elements of our covariance
matrix), for two different dropout rates. Ideally, exactly 68% of the parameters would be within one
predicted standard deviation (where o = /var) of the true value, 95% would be within two, and
99.7% would be within 3. We find that the confidence intervals match the expected distribution more
closely for a dropout rate of 0.03. At this dropout rate, an average of 61.9%, 85.8% and 94.9% of
the data are within 1, 2, and 3 standard deviations respectively. Though these averages are close to
matching the desired distribution, it is worth noting that the distribution for each individual parameter
deviates from the mean. There is also evidence that more training is required for the the 0.1 dropout
model. We would expect a larger dropout rate to increase the epistemic uncertainty, causing more
of the predictions to fall within one standard deviation of the true value. The opposite is true here,
mainly because the larger uncertainties are washed out by poorer predictions.

Dropout rate 0.03 Dropout rate 0.1

Radius Elipticity x Elliptcity y Radivs Elipticty x Ellipticity y

Figure 3: Uncertainties on the six parameter estimates (equivalently, diagonal elements of the
covariance matrix). Predicted parameter values are on the x-axis, true parameter values on the y-axis,
with error bars given by the network’s predicted uncertainties. Orange represents points within one
predicted standard deviation of the true value, green within two, and purple within three.

We now turn to uncertainties on the full covariance matrix. Assuming that the set of parameters x
is drawn i.i.d. for each lens from a multivariate Gaussian distribution specified by our covariance
matrix 3, then the quantity

x—p)"S (x—p) ~x3 4



is distributed as a Chi-squared statistic in p = 6 dimensions. Therefore, we can plot the predicted
values of equation 4 for a set of 1000 images from our test set and see how closely they match the
desired statistic. Figure 5 shows the results of this test for a dropout rate of 0.03 and a dropout rate
of 0.1. Both histograms capture the correct shape of a chi-squared distribution, but both models
appear to be overconfident in their predictions. As before, the dropout rate of 0.1 should have larger
uncertainties that produce better results on the confidence intervals, but the models inaccuracy in
predictions outweighs that benefit. It’s likely that training a model with a larger dropout rate more
extensively would yield a closer fit to the desired chi-squared statistic.

Finally, we can also visually confirm that our models’ predictions of the uncertainty match what we
expect qualitatively. Figure 4 shows examples of images the model thinks are difficult to predict,
and those it thinks are easy —quantified by the determinant of the covariance matrix. Qualitatively,
the outputs are what we expect. The images for which the model is uncertain are those where there
are few, small copies of the source to constrain the matter field. The images for which the model is
confident are those where the lens traces out a well defined ring or there are several copies of the
source that are spread out.
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Figure 4: The chi-squared distribution for a dropout rate of 0.03 (left) and a dropout rate of 0.1 (right).
Both models are biased towards larger chi-squared values compared to the expected distribution but
fit the expected shape.

Figure 5: Images on which the model is uncertain (left) and certain (right). The characteristics of the
lensing images match what would be intuitively labeled as a difficult or easy image to model.

6 Conclusion

We have presented a technique for rapidly estimating the parameters specifying the underyling distri-
bution of matter in a gravitational lens, along with a full covariance matrix of associated uncertainties.
Our parameter estimates are very accurate, and our predicted uncertainties approximately capture both
the epistemic uncertainty in our choice of model, and the aleatoric uncertainty inherent in our data.
Tests on the full covariance matrix show that it is capturing the desired distribution, but that further
tuning of the dropout rate and training of the models may be required. It may also be interesting to
explore frameworks where the dropout rate is more flexible. In particular, we intend to implement
Concrete Dropout [6], which will allow us to treat the dropout rate as a learnable parameter.



7 Contributions

Sebastian worked on fleshing out the data augmentation pipeline and building the loss function for
the models. Ben worked on building the model architecture and training each individual model. Both
partners contributed equally to testing code and to the production of this paper.

8 Code availability

All code is available at the following github repository https://github.com/bsorsch/cov_
grav_lenses.

We used some code from this repo as a starting point: https://github.com/yasharhezaveh/
Ensai
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