Real Time Video Colorization Using Color Priors

Sneha Venkataramana
Software Engineer
KL A-Tencor
snehavr@stanford.edu

Abstract

I worked on developing a system to perform guided colorization of grayscale videos
using color priors. For this work, I built on two existing methodologies - Real-Time
User-Guided Image Colorization with Learned Deep Priors (1) (4), and, Neural
Color Transfer between Images (2).

I employed two models in this work, one to colorize the grayscale videos and
the other to transfer the color between frames in the videos. I experimented by
tweaking the architectures in the prior implementations to identify what works best
in our case, which essentially combines the two of them. From the perspective of
the flow the system, the user provides sparse local color hints for the first frame in
the video - these color hints provided by the user acts the color style source for the
next part of the model. I implement color style transfer to incorporate the colors
into the rest of the video using the previous frame as the source for the colorization.

1 Introduction

In this project I extended Zhang et. al.’s (1) (4) model to colourize black and white videos and then
used the color transfer work in Gatys et. al (2). This project allows the added flexibility of allowing
the user to guide the colorization of a video (or a gif) by adding color priors. If no color priors are
provided, the colors learned by the CNN model (through training on the imagenet dataset) will be
used to color the videos. In addition to colorization, I also provide the user the ability to style the
video (e.g. adding a starry night effect on top of their choice of colorization) to their wish.

2 Related work

2.1 Manual Colorization with references

Levin et al.(9) propose an effective approach that gets the user input in the form of scribbles on the
grayscale images. Least square optimization is used to propagate this color to the rest of the image.
Yatziv et al.(10) uses weighted combination of user scribbles to color the image. Many have used a
reference image to colorize a black and white image. Welsh at al.(11) make use of the pixel intensity
and the neighborhood statistics to find a similar pixel in the reference image and then transfer the
color of the matched pixel to the target pixel.

2.2 Automatic Colorization Without references

The work done in Cheng et al.(5) uses the assumption of a perfect patch matching technique in an
extensive database to color the images. The paper proposed by Zhang et al.(4) solves the colorization

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

issue using a feed-forward pass in a CNN at test time and is trained over a million images. The
algorithm is evaluated using a "Colorization Turing test" which is basically using humans to
distinguish the ground truth and generated color images.

Zhang et at.(1) uses color priors to have the added flexibility of colorizing grayscale im-
ages in a way that the user wishes. If no priors are provided, then the model colorizes the image
based on its trained data. According to the model developed in Zhang et al.(1), a reference image can
also be provided to give a reference for coloring the image.

2.3 Color Transfer

There are two types of color transfer done in the field today. In non-parametric color transfer, color
is transferred onto the input image using Image Analogies framework (12). Under parametric color

transfer, learn prediction functions from large data sets of color images at training time. This approach
is the explored in Larsson et al.(13) and lizuka et al.(14) using CNN.

3 Dataset and Features

I trained the model using 2 datasets - CIFAR-10 (7) and ImageNet (6). Initially I used the CIFAR-10
as the images are smaller and faster to train; this was simply used as a proof-of-concept for the initial
milestone; and I moved on to training the model imagenet afterwards.

3.1 CIFAR-10 Dataset

The images from the CIFAR-10 are colour images of the dimension 32x32. The data was split into
train, test and validation sets. The model was trained on 50,000 images. The test and validation
contained 10,000 images each.

3.2 ImageNet Dataset

These images are larger and have an average resolution of 469x387 but were re-sized to 256x256 in a
prepossessing step. There were 50,000 images in the training image set and 10,000 images in the test
and validation tests.

3.3 Features
e My input image is re-sized to 256x256 to fit memory constraints
o The other input is a user-given hint, which is converted to a 256x256 RGB image
o The network represents the 3-channel hint in 2-channels

e Ground truth is a color image which was de-colorized for training

4 Methods

My final approach for this system was to use the two tower model in the colorization work, and build
a pipeline that feeds the output of the colorization model into the color transfer model (built on VGG).
This process happens in a loop so as to colorize (and add a style if required) the entire video. The
first half of the model is as shown below.

convl conv2 conv3 conv4 conv5 convé conv? conv8 conv9 convli0

Global 3 i 3 i
(a trous/dilated) (a trous/dilated)
hints == e e— — — :I
U 316 512 512 512 512 [
g HW . Main colorization network layers . Input layer
D Local Hints Network only layers —p Added to main network
Grayscale H/2, W/2 " . i ’ Output
image "] Global Hints Network only layers Spatial upsampling colorlzation
H/4, W/a Lo
“Ill”’”‘w"‘ :] | “ Y
1 ¢ ' 1 1 | | 1 | | |
1 %64 128 256 512 512 512 512 256 128 128 2
e [] = []
Local 384 384 384 384 384 384 Color
hints |:| distribution
UI 313 zZ

Figure 1: Deep Colorization Architecture using CNN

This is the mostly built on the model based on Real-Time User-Guided Image Colorization with
Learned Deep Priors. I modified the hyper-parameters (learning rate over 3 magnitudes) and the
training models (adding and removing convolution layers). I used squeeze convolution filters in the
colorization model to reduce the number of parameters. The models used are outlined below. I trained
this model for 15 epochs for both Imagenet and CIFAR-10, and adding convolution layers did not
significantly reduce the loss on the generator at the end of the 15 epochs.

The model mainly consists of 3 parts - the main colorization network that trains and learns colors
from the training dataset, the local hints network which is the input sparse vector from the user
containing color values for certain areas in the image and the global hints network.

The main colorization network uses a U-net architecture. The network consists of 10 convolution
layers and the activation used in each layer is ReL.U activation function. Conv2 and Conv3 blocks
are connected to Conv8 and Conv9. This symmetric shortcut connection help to use the low level
information for later layers. Each convolution uses a 3x3 filter. The last Conv layer (which is a 1x1
filter) is used to map the Conv10 to the output color. In the last layer, tanh is added for activation.
The local hints network are shown in red color in fig:1.The sparse vector containing the user given
colors are concatenated with the input grayscale image. There is no back propagation of the gradients
from side task to the main branch (global network).

The global hints are shown in green in the network architecture figure. This is given every 4
convolution layers into the main colorization network.

maxpool | maxpool | maxpool maxpool

! maxpool depth=256 depth=512 depth=512 size=4096
depth=64 depth=128 3x3conv 3x3 conv 3x3 conv 7 VFCLH 7
3x3 conv 3x3conv conv3_1 conv4_1 conv5_1 FC2
convl_1 conv2_1 conv3_2 conv4_2 conv5_2 size=1000
convl_2 conv2_2 conv3_3 conv4_3 conv5_3 softmax

conv3_4 convd_4 conv5_4

Figure 2: Color Transfer Architecture using VGG

The second part of the model is to use a color transfer model using VGG network?2. I followed the
model based off . I modified the loss function on the color transfer network by adding a heavier loss
on the content model that helped generalizing the color scheme.

Final loss function:
‘ccontent(ﬁ fa l) = 12 Ei,j (F;'lj - Pilj)z o |le] - Pilj|

Ltyie(@,7) =120 o wi By

Content Image Style Image Max Pool Max Pool Average Pool
Adam Optimizer Adam Optimizer Lbfgs Optimizer
Old Loss New Loss New Loss

Figure 3: Results of modifications in the color transfer model

The above mentioned models are used in sequence using the pipeline shown in the figure below. The
first frame of the video is input to the colorization model along with the user defined color hints. The
color hint image is converted from a 3-channel (RGB) image to a 2-channel image to reduce the input
parameters. Next the trained U-net model colorizes the image base on the hints provided and outputs
a 256X256 colorized image.

This image is then taken as a reference image in the color transfer model and applied iteratively on
rest of the frames. If we increase the weight on the style transfer, this model can be used to generate
a video using the style of the reference image.

User-defined
colour hint retained
in the final frame

Grayscale Image User-defined colour hints
This is repeated
for all the frames
in the video

Color Transfer
Network

Global Hints| Local Hints
Network Network
(CNN) (CNN)

U-Net Architecture

Color Transfer
Network

Next frame from
the grayscale video

256 x 256
Colourized
Image

VGG /NIN

Figure 4: Pipeline

5 Experiments & Results

There were totally 4 approaches I tried for colourizing the grayscale videos.

Using only the colorization model

(1) + (2) with minor param tweaks

(1) + updated loss function on (2)

(1) with reduced params + (2) with updated loss function

The first approach had the drawback that the color hints for the first frame may not be applicable to
the 100" frame.

The second approach was quite improved, but could have been better on relaxing the weights to
reference image.

The third method worked better on generalizing the color scheme between frames. I felt that this
suffered from the amount of time it took to colorize the whole video. This was my motivation to try
the next variant.

The final variant was a test to see if reducing the parameters in the network had a strong effect on the
outcome - the motivation here is that the color transfer is rather slow and could be perhaps sped up -
this had reasonable results as the difference in the quality of the generated images was low (<10%
PSNR loss). This was done by borrowing ideas from SqueezeNet (8) by reducing the number of
params. Ideally I would have liked to do this on both the models, but only experimented with doing
this with the colorization model.

Overall, the third method that combined both models was both qualitatively and from a metric
perspective, the best candidate.

5.1 Learning Curves

QFAR-10 Imagenet
— GCE 12 o=
- GENT
GENT |
10 — Gl 10 cu

Loss
Loss

0 200 400 600 800 1000 1200
0 250 500 750 1000 1250 1500 1750 2000 Rerstions
uuuuuuuu

5.2 Results

Color Hint Image | Colorized GIF with Colorized GIF
hints without hints

Figure 5: Test Results of the Model

The third column in fig:5 demonstrates the results from this work, where the input gif file and a color
hint file is used to generate the colorized frame, which is then used by the color transfer model to
colorize the rest of the frames in the gif. The final column is an generated using the same network,
but when there were no user provided hints on colorizing the gif.

5.3 Evaluation

I will calculate the Peak Signal to Noise Ratio (PSNR) value by comparing the frames from ground

truth videos to the frames from our predicted output — a high PSNR would indicate that our model is
relatively good.

The results were evaluated objectively using PSNR (Peak Signal to Noise Ratio) and qualitatively as
well. All the variations below were tested with 15-20 points of color hints.

Legend: (1): Colorization model (2): Color transfer model

Method Avg. PSNR

Only colorization model 11.46 + 0.35
(1) + (2) with minor param tweaks 12.57 £ 0.13
(1) + updated loss function on (2) 13.04 +£0.18
(1) with reduced params + (2) with updated loss function | 12.55 £ 0.24

6 Conclusion / Future Work

I observe that colorziation of a video or a gif using a single hint can produce convincing results as
long as the video is small (I tested videos up to 10 seconds). Another observation that I had is that my
initial approach of using a single hint and colorization network alone was not enough, and combining
colorization and a color transfer model was able to produce the best quality videos. Finally, the
current system could be made to run faster, for which I validated by adding fire modules, an idea for
smaller number of parameters in the SqueezeNet paper. Reducing the number of parameters in the
complete network, while applying this to fairly small videos seems like the best step forward when
using this work.

I would like to explore the work of He, et.al. on Deep Exemplar based Colorization where this
network is augmented with a similarity-sub net which showed very realistic colorizations in their
paper. This would be done by modifying the colorization network to have an additional parallel path.

Another interesting problem I would have liked to work on, is to train this network end-end instead
of two separate networks. This could be done by formulating a joint loss function for the learning
step after connecting the two networks, where I try to minimize (i) the color difference between two
adjacent frames, (ii) the distance from the best predicted pixel color and the given user color.

7 Contributions

My codebase is here. The following code changes were made from the original work that I borrowed
from:

e Expanding and contracting the colorization model using convolution filters (mod-
els/networks_v2.py, models/networks_v3.py)

e Reducing the params on the colorization model (models/networks_squeeze.py)
e Pipeline (modified in train.py and neural_style.py)

— Looping over a set of photos, but a single color hint to generate a gif (train.py)
— Feeding the output of the colorization model and then calling the color transfer model
(full.sh)

e Tweaked loss function on the color transfer to the one discussed earlier (mod-
els/neural_style.py)

References

[1] Real-Time User-Guided Image Colorization with Learned Deep Priors (2017) - Zhang, Richard
and Zhu, Jun-Yan and Isola, Phillip and Geng, Xinyang and Lin, Angela S and Yu, Tianhe and
Efros, Alexei A https://richzhang.github.io/ideepcolor

[2] A Neural Algorithm of Artistic Style (2015) - Leon A. Gatys, Alexander S. Ecker, Matthias
Bethge https://arxiv.org/abs/1508.06576

[3] Deep photo style transfer (2017) - Luan, Fujun and Paris, Sylvain and Shechtman, Eli and Bala,
Kavita https://arxiv.org/abs/1703.07511

[4] Colorful Image Colorization (2016) - Zhang, Richard and Isola, Phillip and Efros, Alexei A
http://richzhang.github.io/colorization/

[5] Deep colorization (2015) - Cheng, Zezhou and Yang, Qingxiong and Sheng, Bin Book : Proceed-
ings of the IEEE International Conference on Computer Vision Pages : 415 — 423

[6] ImageNet: A large-scale hierarchical image database (2009) - Deng, J., Dong, W., Socher, R., Li,
L.-1., Li, K., and Fei-Fei, L. http://image-net.org/

[7] Learning Multiple Layers of Features from Tiny Images (2009) - Alex Krizhevsky
https://www.kaggle.com/c/cifar-10/data

[8] SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (2016) -
Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt
Keutzer https://arxiv.org/abs/1602.07360

[9] Colorization using optimization (2004) - Anat Levin, Dani Lischinski, and Yair Weiss. In ACM
Transactions on Graphics (TOG), Vol. 23. ACM, 689-694

[10] Fast image and video colorization using chrominance blending (2006) - L. Yatziv ,
G. Sapiro, IEEE Transactions on Image Processing, v.15 n.5, p.1120-1129, May 2006
[doi>10.1109/TTP.2005.864231]

[11] Transferring color to greyscale images (2002) - Tomihisa Welsh, Michael Ashikhmin, and Klaus
Mueller. ACM Transactions on Graphics (TOG) 21, 3 (2002), 277-280.

[12] Image analogies (2001) - Hertzmann, Aaron and Jacobs, Charles E. and Oliver, Nuria and
Curless, Brian and Salesin, David H. https://dl.acm.org/citation.cfim 2id=383295

[13] Learning Representations for Automatic Colorization (2017) - Gustav Larsson, Michael Maire
and Gregory Shakhnarovich https://arxiv.org/pdf/1603.06668.pdf

[14] Let There Be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic
Image Colorization with Simultaneous Classification (2016) - lizuka, Satoshi and Simo-Serra,
Edgar and Ishikawa, Hiroshi

