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Abstract
The abstract should consist of 1 paragraph describing the motivation for your paper and a
high-level explanation of the methodology you used/results obtained.

As beginners in the field of neural networks, we set out to tackle a project that would
develop our understanding, challenge us to use the techniques learned in CS230, and teach
us the value of neural networks. We wanted to pick a problem that would not be achievable
without neural networks. So, we chose a problem that was made intentionally difficult for
computers. We attempted to create a neural network that can determine the solution to
captcha images based off of an RGB image. We tried many models, architectures, and
languages. While we had varying accuracy across all of the models, we were able to
produce a few effective networks. This paper is an overview of our work and what we
learned.

Related Work

Some related work we found were github repos by other students working on basic to
complex models trying to do image classifying. Some examples of these would be
Panagiotis Tigas(https://github.com/ptigas/simple-captcha-solver) who wrote a NN that
solves only 16 characters all being lowercase. Another was Jackon
Yang(https://github.com/JackonYang/captcha-tensorflow) who inspired us to first start
our repo in tensorflow instead of keras. His models only went up to 4 character strings also
limiting the number of characters to just numbers for most of his trials except using the

whole 62 characters like us but for only 2 characters in a given image. Jackon did not list
the results of his model so we couldn’t directly compare our results to his.

There has been a lot of previous work done in this area but we tried to stand out by
pushing the limit of number of characters in a given captcha and by how many unique
characters we used. We believe we achieved that goal.



Introduction

The title of captchas is notably “Prove you're not a robot.” and they are intended to only be
completed by humans. Often times, even humans have trouble determining the string
represented. Therefore, solving them based only off of an image is a very challenging
computer programming strategy. If it weren’t for neural networks and CS230, we would
not have the skills necessary to tackle this problem. However, when equipped with deep
learning techniques, and access to very powerful computers. We were able to prove that
our computers were not robots, thousands of times, in fact. This illustrates the strength of
deep learning. Since captchas are images generated by computers using traditional
programming methodology, attempting to guess them with deep learning is essential a
battle between deep learning and regular programming. We sought to develop models that
could achieve enough accuracy to conceivable pass the captcha test.

We created several models in attempting to create a captcha solver. Several smaller
networks capable of solving captchas of length 1 - 3. We created models in multiple
libraries and using many architextures. We did this to develop familiarity with the problem
and models available to us. We then explored which models were providing us with the
best results and choose to develop them further.

Our different models work with various string lengths and alphabets (possible characters
to use in the string). The inputs to our models are RGB images with values ranging from
0-255 before we preprocess them to be between 0.0 and 1.0. The outputs are “n-hot” arrays
which can be thought of as the concatenation of n one hot arrays with each index
corresponding to a character in the captcha alphabet (“ “, 0-1, a-z, A-Z). Thus the output,
represents a n-character string.

The two models we choose to explore the most were a ResNet50 and a flexible fully
connected neural network. The ResNet50 is a 50 Layer Residual Network used for image
classification. It is generally better than a traditional Deep CNN because accuracy doesn’t
degrade as it goes deeper and learning isn’t as difficult. The ResNet can be looked at as
subtraction of features learned from the input of a given layer.

The fully connected network uses is written in tensorflow. I uses relu activation and a
sigmoid output layer. It is training using a mean squared difference loss function, we found
this to be most effective when working with our output format. For simplicity sake, we
typically used the same number of nodes for the all of the layers. We found that scaling up



the number of nodes was most effective for dealing with an increase in alphabet length.
And scaling up the layers, worked well for increases in string length. For example, with
string length: 1 and an alphabet: (0-10), a network with 1 layer and 10 nodes was able to
achieve 0.99 accuracy. With string length 1 and an alphabet: (0-10, a-z) a network with 1
layer and 100 nodes was able to achieve 0.87 accuracy. With an alphabet (0, 10) and a
string length of 4. A model with 4 layers and 100 nodes was able to achieve an accuracy of
0.49. This observation helped us to predict the most effective layer sizes for our larger
models without having to experiment on them which can be very costly in terms of time
and resources.

Dataset and Features

The most interesting part of our project is that we were able to use a real captcha generator
from the python library. This allowed us virtually unlimited data during training.
Therefore, we were truly able to investigate the benefit of having a large dataset.
Interestingly, we notices no notable increase in training ability after around 20,000 images.
This could perhaps be due to a lack of variety in captchas. We investigated making the
images black and white to decrease our input feature size but we found that color
differentiation was important in character recognition.

Methods

The fully connected neural network uses mean squared difference and xavier initialization.
It uses an adam optimizer and a learning rate of 0.001.

Describe your learning algorithms, proposed algorithm(s), or theoretical proof(s). Make
sure to include relevant mathematical notation. For example, you can include the loss
function you are using. It is okay to use formulas from the lectures (online or in-class). For
each algorithm, give a short description of how it works. Again, we are looking for your
understanding of how these deep learning algorithms work. Although the teaching staff
probably know the algorithms, future readers may not (reports will be posted on the class
website). Additionally, if you are using a niche or cutting-edge algorithm (anything else not
covered in the class), you may want to explain your algorithm using %2 paragraphs. Note:
Theory/algorithms projects may have an appendix showing extended proofs (see
Appendix section below).

Experiments/Results/Discussion

Because we set out to develop models that could surpass a captcha test, we cared mostly
about accuracy. We mostly cared about achieving accuracy that could be used to solve a
captcha within a reasonable amount of attempts. Obviously our networks had to achieve



levels far beyond random guessing but we did not care much about surpassing an accuracy
of say 25%. For the tensor flow model, we use the number of correct guesses over the total
number of guesses. For the Keras models we use the build in categorical accuracy function.
When we started we were getting decent accuracies above 50% with just 10 characters so
everything seemed like it was going the right way as shown in the image below.
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For the full alphabet of captcha characters and testing with variable string lengths of 4, 5,
and 6. Our best model achieved an accuracy of 28%. We view this as a success based on our
purposes because it could solve a captcha in an average of less than four guesses.

Below, we have pictured the guesses on the test set done by the tensorflow network over
an alphabet of (0 - 10) and a string length of 2. In this case it was set up with 5 layers and a
layer size of 100 nodes.
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We have definitely not overfit our train sets because we made new training sets for every
instance of our program. This made training realistics and in reality our test and train sets
could have been produced in unison.

Two major bugs that we ran into during our process ate up a good portion of our resources.
The first bug was the problem of exploding and vanishing gradients. We spend a long time
trying to adjust our, initialization, learning rate, and network structures. However we
found it was a result of our input features being passes in in the form 0-255 rather than
0-1. We also had many of of Keras models training with binary cross entropy as the
accuracy function and this was producing misleading results. We thought we we achieved
0.98 accuracy but really our models were training to guess all zeros.

One additional note to consider when, dealing with a problem such as captcha solving is
that there is intentional difficult present. Captchas are meant to be hard and many times
humans cannot solve them on their first attempt we determined human error to be 0.34 on
this generator by attempting to manually solve randomly sized and labeled capchas.

The next step would be to use other captcha generators. In order to grow our networks
flexibility. Also, we would like to create an end to end program such as a web browser
extension that can automatically surpass the captcha test.

Contributions

Isaiah worked on modifying multiple existing networks to fit our project so that we could
choose the best one. Thunder worked on creating a flexible model that we could adjust to
different alphabets and string lengths we wanted to work with. [saiah's work is on the
Keras Models and Thunder’s work uses tensorflow. Although we included only a few
programs for simplicity sake. We both have written and tested many, many networks. The
examples we included are the easiest to use or best illustrate our findings. Thunder also
wrote the methods to flatten, unflatten, convert to one hot, and convert from one hot for
the data manipulation.

Code
https://github.com/Isaiah21/cs230
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