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Deep Neural Networks were applied to Chest Radiographs to accurately classify patients with pneumonia
and draw bounding boxes over regions within the radiograph that had strong evidence of pneumonia. Pneumonia,
an infection of the lungs and a leading cause of death worldwide, is characterized by fluid in the lungs and can be
identified by regions of opacity in radiographs. Pneumonia is difficult to diagnosis, because it requires expert
interpretation of chest radiographs and laboratory results to differentiate pneumonia related opacity from other
pulmonary cavity diseases. Two different one-stage detection models were evaluated - RetinaNet and YOLOV3.
Additional steps were taken to determine if state of the art performance could be recovered by detection algorithm
that ran in real-time or near real time. The final models used were RetinaNet, YOLO, and YOLO + CheXNet and were
evaluated on mean Average Precision of bounding box predictions compared to labels generated by expert
radiologists. RetinaNet demonstrated higher performance than YOLO even in cases were YOLO was paired with
robust classifiers. YOLO ensembles performs marginally better than YOLO as a single model. In addition, some
steps of ChexNet improvements were taken such as different weights initialization.

1. Introduction

Pneumonia is an infection of the lungs that
causes inflammation and fluid build up in the alveoli.
The build-up causes symptoms such as chest pain,
fever, and severe cough. In some cases where a patient
has a weakened immune system or the condition is not
caught early enough, the disease may result in death
[1]. Pneumonia is one of the leading causes of death in
the U.S. and worldwide [2]. Currently, diagnosis is
made by highly trained clinical experts interpreting
chest radiographs (CXR) and laboratory exams [3].
Areas of increased opacity are usually clear indicators
for the potential presence of pneumonia, because, the
fluid, characteristic of pneumonia, preferentially
attenuates the x-ray beam and therefore appears more
opaque than the surrounding area [4]. Diagnosis of
pneumonia via CXR is complicated because a number
of other pulmonary conditions present as opaque
regions in the CXR, such as fluid overload (pulmonary
edema), bleeding, volume loss (atelectasis or collapse),
lung cancer, or post-radiation or surgical changes [4].
Our proposed model uses convolutional neural
networks to processes CXRs and output bounding
boxes localized to opaque regions indicating evidence
for solely pneumonia. A robust method for accurately
identifying cases of radiological evidence for
pneumonia would speed diagnosis time and aid
healthcare providers with providing a higher quality of

care for patients and hopefully reduce the number of
deaths caused by pneumonia worldwide.

2. Related Work
2.1 Medical Image Classification

Recent advancement in image recognition
have shown that Deep Neural networks can be
successfully used for medical images classification and
localization [9]. CheXnet a 121 layer Densenet
architecture model achieved an F1 score of 0.435
when classifying 14 different pulmonary conditions
including pneumonia, which was markedly higher than
the 0.387 average of radiologists [5]. Despite this
performance the model has received criticism on
implementation and source data [6]. Despite high
performance of deep learning models on image
classification  (medical images or otherwise),
interpretation of chest radiographs is still done
manually [6].
2.2 One Stage Detection

Most predictive models implemented in
clinical settings prioritize simplicity of implementation
and output [7]. One stage detection and localization
models such as YOLO, and SSD, have been shown to
have lower accuracies but reduced model complexity
[10][11]. RetinaNet, uses focal loss to improve
accuracy of one stage detectors to a level comparable
to that of a two stage detectors [8]. The models
proposed in this work focuses on the uses of one-stage

1



detection frameworks for the classification and
localization of radiographic evidence for pneumonia.

3. Dataset and Features

The CXRs and the accompanying bounding
box labels are sourced from the Radiological Society of
North America (RSNA) via the RSNA Pneumonia
Detection Kaggle competition [12]. The dataset
consists of ~37,000 unique patient IDs labeled as 31%
with opacity, 41% no lung opacity (normal), and 29%
other (not normal, no opacity). For images labeled as
pneumonia positive, bounding boxes of the
abnormalities have also been included. An image can
have anywhere between 0 and 4 associated bounding
boxes. Patient’s sex and age also included in the data
but was not used for the model. Compared to
previously used in research datasets such as NIH the
RSNA dataset claims to be more precisely labeled [4].

The CXRs are stored in dicom format at
1024x1024 solution. The images have been converted
to jpeg and scaled down (various sizes) for further
analysis. Very basic data augmentation, flip transform
of random images, has been used to increase size of
training set. Additionally in some models, randomly
concatenated pairs of positive and negative images
have been used as training input. The 30,200 images in
the training data was split into an 80/10/10
train/dev/test split. There was an additional set of
3000 images designated as the test set by the Kaggle
sponsors for which labels were not provided. This set
was used only for comparison against other

leaderboard results.
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4. Methods
4. 1 RetinaNet

RetinaNet is one stage object detection
algorithm that consistently outperforms other models
in terms of accuracy [8]. This model was selected as a
representation for state of the art one shot object
detection. Compared to other one-stage object
detection algorithms, RetinaNet uses a novel loss
function that recovers accuracy seen in two stage
detectors. The loss function, focal loss, applies changes
to the standard cross entropy loss to weight losses
from harder classes over easier classes. This idea is
captured in the term (1 - p,)” in which p,< 0.5 indicates

a difficult class and y > 0 controls reduces weight for
easier classes [8].

FL(p) = —(1-p)" *log(p,)

The model used in this research was adapted
from the keras-RetinaNet repository [13]. In this
implementation, negative images were ignored in
training, changes were made to calculate loss on all
images. A learning rate of 0.001 and batch size of 64
were chosen to match the hyperparameters used in
YOLOv3. Despite better performance shown by
selecting ResNet101 for the RetinaNet backbone [8],
ResNet51 pre-trained on ImageNet was selected for
decreased training time. Backbones other than ResNet
were not explored. The models were trained for 6
hours on two p100s.

4.2 Y0OLOv3

YOLO is a model known for fast, robust
predictions of objects in real time. The original
implementation struggled with small and unknown
objects [10]. Subsequent iterations improved
limitations of the first. Compared to YOLOv2, YOLOv3
architecture was improved by adding new blocks, such
as residual blocks, skip connections and upsampling.
These additional layers allow for a much deeper
network. YOLOv3 is built on Darknet 53, compared to
Darknet 19 of previous iterations.

For the task of detection, 53 more layers have
been stacked onto the backbone, giving a total of 106
layers.

YOLO v3 network Architecture ‘ﬂa

YOLQ'’s innovation lies within its loss function,
which is a 5 term cross entropy loss that captures error
in the width, height, coordinates, class probability, and
confidence. This function captures the idea of a
regression approach to predicting bounding boxes. In
YOLOv3 class and confidence are also predicted in a
regressive manner [10][14].
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YOLOv3 is an appropriate choice for
localization because it is a one stage detection network
that allows for a simpler, less computationally
expensive pipeline. The model was initialized with
weights from darknet53.conv.74 that had been trained
on ImageNet. A learning rate of 0.001 and batch size of
64 with a subdivision of 8 were selected on
recommendation of YOLO creators and hw constraints.
No changes were made to bounding box
configurations. The model was trained on the positive
samples from our training data set on two P100’s for
around 10 hours. The first 1000 iterations were trained
on a single P100 for stability.
4.3 DenseNet 121 (CheXNet)

To improve YOLOv3 classification capabilities
[14], the model was paired with CheXNet, a
classification network. Given the similarity of the task,
classifying chest x-rays, CheXNet is an appropriate first
choice for classification modules. The model
implementation [15] was adapted to train on three
classes - Normal, Opacity, and Not normal/opacity
compared to the 14 conditions initially used in the
paper [5]. CheXnet uses a simple log loss function in
which the loss is equal to the negative log of the
predicted probability of an image being of a certain
class, such that the error decreases the closer the
probability is to 1 or 0 depending on the class label.
This loss is summed across all three classes [5].
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L(X,y) = Y [-yelogp(Ye=1]X)
c=1

_(1 - yc) 1ng(yrc = 0|X)]

Four DenseNet models were trained, three were
using pre-trained weights from the NIH dataset and
the one was using pre-initialized weights from
ImageNet: as weights initialization , with and without
layers freeze and drop out to overcome overfitting.
DenseNet was run using scaled down images at
224x224 resolution, with horizontal flipping, batch size
of 32 and a decreasing learning rate (“reduced on
Plateau”) in a range (0.001, 1e-9). However, the low
learning rate was causing the network to overfit on
training data, so future iterations were limited to the

smallest learning rate of 1le-7. The network were
trained for approximately 30 epochs. The result of
prediction was ensembled with Yolo predictions to
improve the classification.

5. Results
0

200
400
600

800

1000

0 200 400 600 800 1000

Image of patient with pneumonia. Green indicates ground truth label
and red indicates YOLO bounding box predictions.

Both YOLO and RetinaNet were able to locate regions
of pneumonia related opacity in CXRs. Above we can
see example patient with opaque regions related to
pneumonia bounded.

Given the dual nature of the task,
classification and localization, we evaluated our
models using F1 and AUROC for classification and
mean average precision (mAP) for localization. mAP is
defined as the average precision of the bounding boxes
at different intersection over union (loU) thresholds.
The metric sweeps over a range of loU thresholds, at
each point calculating an average precision value. The
threshold values used range from 0.4 to 0.75 with a
step size of 0.05: (0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75). It has gained popularity as benchmark metric
and is used in several object detection challenges
(including the RSNA kaggle competition) as well as in
both the RetinaNet and YOLOv3 papers.

For each model, the results for the best
implementation on the test set are listed below.

Model F1 Score AUROC mAP
CheXNet with 0.40 0.9058 N/A
NIH pretrain
RetinaNet N/A N/A 0.157
YOLOV3 0.81 N/A 0.141
CheXNet + 0.8385 N/A 0.144
YOLOV3




As expected, RetinaNet outperformed YOLOv3
in terms of bounding box precision. Pairing YOLO with
Chexnet to improve classification did not achieve
performance comparable to RetinaNet. The F1 score of
ensembling two models slightly increased.

1 TP(¢)
|thresholds| Zt: TP(t)+FP(f)+FN(¢)

mAP formula

6. Discussion

Models trained on only positive images
containing bounding boxes showed good localization
and classification when tested with both positive and
negative images. Ensembled CheXNet + YOLO showed
increased precision even when trained on the entire
dataset compared to the single YOLO model trained on
only the positive labels. Despite the marginal
improvement of the ensemble model, we were not
able to recover the performance of the state of the art
baseline - RetinaNet. To understand the difference in
performance we investigated the two components,
classification and localization, separately.

DenseNet classification algorithm showed
better performance for classifying ‘Normal’ vs
Localization algorithms. For the class “No opacity/ Not
normal’ the performance was the worst. Binary
(Pneumonia/Not Pneumonia) F1 score for trained
DenseNet on RSNA data was close to original CheXNet
result (0.43 CheXnet and 0.40 DenseNet with NIH
activation).
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Confusion matrix of YOLO and Chexnet showed that YOLO is
better in True Positive classification and and DenseNet slightly
better in True negative prediction.

Error analysis

In some cases YOLO was unable to distinguish
between no pneumonia/not normal and pneumonia
patients. In the cases were YOLO failed the baseline
illumination was higher compared to other negatives,
which indicates poor radiograph. Other cases of failure
showed similar noisiness at baseline. To avoid these
false positives, additional training on these cases
would be necessary either via feeding in twomers
(positive/negative  pairs for training) or data

augmentation that includes lumosity shift/change.
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Sample patient with no pneumonia with incorrectly drawn
bounding boxes.

DenseNet CAM analyses showed that network
usually focusing on the right areas, but in some cases it
looked at extraneous regions. These cases can be
explained by different image quality. Adding
Deformable Layers to identify offset might improve
this [16].



Generated CAM of CheXNet model to verify classification
weighted important regions, evidence of misclassification of
other sources of opacity
Weights initialization experimentation
Experimentation with previously trained NIH
weights with DenseNet 121 led to increase of AUROC
metric but overfitting on the training set (train and
validation loss difference: train loss: 0.0673 - val loss:
0.5557 after 4 epochs). Validation loss never passed
below 0.37 for all four models. Changing architecture
and adding Dropout layer improved the difference but
overfitting was still observed. Freezing layers led to
underperforming model. Adding more Dropout layers
may potentially improve the performance.

Average ChexNet AUROC with and without
weights initialization

Epoch

7. Conclusion

Retinanet and Yolo were able to predict and localize
radiographic evidence for pneumonia. Pairing YOLO
with more robust classifier marginally improved YOLO.
Both YOLO and Densenet were better at predicting
negatives and had difficulty distinguishing from true
positives and not normal.no pneumonia class.
Retinanet outperformed all other models used for
pneumonia classification, most likely due to weighted
emphasis on harder classes.

8. Future Steps

There is value in a cheap algorithm like YOLO
that could be run in near real time that works on low
resolution data. This model would be especially useful
for areas with limited access to computational and
medical resources. Future work would involve boosting
the performance of YOLO so it is more comparable to

RetineNet, while still maintaining relatively simple
architecture. Though we were not able to show that
pairing YOLO with CheXNet boosted performance,
further work could be done to find a cheaper classifier
that improves performance compared to YOLO trained
with only positive labels. Another option would be to
use the RetinaNet framework with a YOLO backbone in
attempt to capture the improvement gained by using
Focal Loss with a simpler, faster model than ResNet.

Other methods that could improve accuracy
include image segmentation using bounding box
distribution could be performed that prelocalized the
region of interest. Future training could hone in on the
errors produced by misclassification of no
pneumonia/no normal class of images, such as creative
concatenations of train images, up sampling this class,
etc. Similarly, class activation maps for all models could
be investigated to determine potential regions prone
to misclassification. Additionally, many of our models
overfit, experimentation with dropout regularization
on the classification layers may improve overall
performance.

9. Contributions

Each team member spearheaded a different approach
- Ekaterina worked on the simple CNN, CheXNet
modification for RSNA data (preparing data, labels,
applying different weights and architecture change,
script for prediction and adding F1 metric to the
implementation) and CAM visualization; Robert
worked on the development environment, exploratory
data analysis, the YOLOv3 model with the mAP score;
Karina worked on the YOLOv3 and RetinaNet models
and the exploratory data analysis. All members
contributed equally to the report.

10. Code
Software: Described in Requirements.txt on github
Hardware: We used various GPU’s on a Google Cloud
VM Instance
Github: https://github.com/pinkertr/cs230project/
TeamDrive:
https://drive.google.com/drive/u/1/folders/0AInJSPxb
RhX8UK9PVA
Libraries
e Pandas: McKinney, Wes. "Data structures for
statistical computing in python." Proceedings
of the 9th Python in Science Conference. Vol.
445, 2010.
e Sci-Kit Learn: Pedregosa, Fabian, et al.
"Scikit-learn: Machine learning in Python."
Journal of machine learning research 12.0ct
(2011): 2825-2830.




Keras: Chollet, Francois. "Keras: The python
deep learning library." Astrophysics Source
Code Library (2018).

Numpy: Walt, Stéfan van der, S. Chris Colbert,
and Gael Varoquaux. "The NumPy array: a
structure for efficient numerical
computation." Computing in Science &
Engineering 13.2 (2011): 22-30.

OpenCV: Bradski, Gary, and Adrian Kaehler.
"OpenCV." Dr. Dobb’s journal of software
tools 3 (2000).

Pydicom: Mason, D. "SU-E-T-33: Pydicom: an
open source DICOM library." Medical Physics
38.6Part10 (2011): 3493-3493.
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