High Frequency Exchange Rate Forecasting using Deep Learning
on Cryptocurrency Markets

Imanol Arrieta Ibarra

imanol@stanford.edu

Bernardo Ramos

bramos@stanford.edu

December 16, 2018

Abstract

In this work we develop a deep learning model for pre-
dicting high-frequency exchange rates of cryptocurren-
cies. Given their central role in digital assets, we focus
on predicting 1-minute movements of Bitcoin-Ethereum.
We find our model to have outstanding accuracy, and with
it we briefly illustrate how our tool can be used in benefit
of hedging and profitable trading strategies.

1 Motivation

Despite the widespread belief that the efficient market
hypothesis holds, recent state-of-the-art methods have
shown there are grounds to have reasonable performance
in predicting financial returns. Following works as [4],
[6], and [8], we wish to assess the extent of these mod-
els’ performance in the non-traditional setting (i.e. non-
equity, non-derivatives time series) of cryptocurrency ex-
change rates.

There are numerous reasons why predicting cryptocur-
rency exchange rates is a challenging problem. First, nei-
ther Deep Learning nor traditional Time Series Models in
high-frequency equities data tend to have a performance
that is superior to correctly predicting the sign above two-
thirds of the time [9]. Second, cryptocurrency data is
deemed largely volatile, making it harder to predict trends
in very short time periods. Finally, there might not be a
very strong predictor of movements in prices using market
data.!

n finance, indices such as the S&P 500 are good predictors of where
individual stocks will move.

2 Related Work

With the advent of Deep Learning, traditional financial
time series models are increasingly substituted in favor
of models with superior performance, such as Recurrent
Neural Networks. Because of this, the recent literature
has been expanded with a number of efforts attempting
to fit idiosyncrasies of financial data into deep learning
paradigms.

Works following the above lines are illustrated by
[2], who utilize Wavelet Transforms with stacked auto-
encoders to generate features. We deviate, however, from
such approaches since neither technique seems to im-
prove predictions unless there are evident problems of
high model bias. Moreover, it is noted by [2] that using
wavelet de-noising can in fact harm model predictions,
and they opt for using raw time series as inputs to the net-
work. Were our models to show a noticeable bias problem
we would consider producing higher-level features with
such techniques as stacked auto-encoders.

3 Problem setup

Our aim is to predict relative movements in Bitcoin (BTC)
and Ethereum (ETH) by forecasting the difference in their
exchange rate ratio at the 1-minute frequency. Our appli-
cation is intended to be used for trading purposes, there-
fore we use the Time-Weighted Average Price (TWAP) as
the reference —or target— exchange rate.> The TWAP is
computed as the average between the open, close, highest

2Interchangeably, we will refer to exchange rates as “prices’.

Changes over time
0.0020

—— Train
Dev
— Test

s

Dot P o 00 G P a0 b oAb
ST e e e e e

0.0015

0.0010

0.0005

0.0000

-0.0005

-0.0010

-0.0015

Figure 1: Returns over the study period.

and lowest price in a time window. It is a smoothed quan-
tity that is crucial for robustly timing orders in accordance
with price expectations.

3.1 Data

The data was obtained from a company called Binance,
a cryptocurrency exchange which offers trade historic
data (up to last year’s September, when the company
started) using their public API. Our data comprises the
time series of exchange rates for Bitcoin (BTC), Ethereum
(ETH), and Tether (USDT) at the 1-minute frequency
from September 1, 2017 through October 31, 2018. Anil-
lustration of the data is provided in Figure 1, which shows
the progression of returns over the study period.

3.2 Features and Data Imputation

For each minute window and each pair of cryptocurren-
cies, our data provides the open, close, high and low
rates, as well as the volume of trades executed in that pe-
riod. We provide the network with an easier representa-
tion of these series by computing first-order differences
and adding both levels and differences into the inputs.
When no trades were executed or data was otherwise
not available, we use a last-valid observation imputation
scheme. To expand our data with potentially useful fea-
tures, we append both an indicator of whether there were
trades at any given point, and the number of timesteps
since the last trade was executed. These becomes less of
a problem as the liquidity in the crypto market increases,

but we still correct for it because of the prevalence of these
cases in the training data.’

Finally, a one-hot encoding for the hour of the day is
also used, inspired by the fact that other financial markets
experience heteroskedastic volatility throughout a trading
day and day of the week.*

The data split was made so that validation data would
comprise September 15, 2018 through September 30, and
test data the entire month of October. Train, validation
and test data respectively account for roughly 83%, 6%
and 11% of the dataset, whose trainable volume totals lit-
tle more than 60 variables and 380,000 observations.

4 Methods and Technical Approach

Following its success and popularity in time-series fore-
casting, our approach is to use an LSTM Recurrent Neural
Network. We model this problem as a regression-type su-
pervised learning to predict BTC-ETH one minute ahead,
where inputs are histories of the time series of exchange
rates as well as those features described in Section 3.2.

4.1 Architecture

The network we fit is a single LSTM module (of neuron
size 32), followed by a 64-neuron fully-connected layer
with Leaky ReLLU activation and an output layer. Dropout
(with a moderate rate of 0.3) is used after the first dense
activation and before the non-linearity. Weights in the
fully connected layers are regularized with an L2-penalty
(rate 0.0001). Both inputs of the model and outputs of the
LSTM module are batch re-normalized, as it is shown that
time-variant trends and volatilities make batchnorm less
effective due to the strong dependence in mini-batch acti-
vations [7]. The sketch of the final architecture is shown
in Figure 2. All hyperparameters —including the model
architecture— were submitted to a random search process
where 150 models were trained to yield a close-to-optimal

3Since we are working with time-series, we are constrained on the
distribution for our train, dev and test sets. Because of the novelty of
crypto markets, this causes the dev and test sets to have higher liquidity
and lower volatility than the training set.

4Different from other markets, crypto has no time-constraints to be
traded. This creates a tangible difference between the behaviour of
prices when other markets are open, relative to when they are closed.

@ © O
LReLU m ﬁ LReLU
Dropout Dropout Dropout Dropout
FC FC FC FC
N EN EN

32 Steps

Figure 2: Network architecture.

Hyperparameter search loss distribution

8000 — Val. loss
6000
»
! 4000
)
)
2000
0

0.0008 0.0010 0.0012 0.0014 0.0016 0.0018

Figure 3: Hyperparameter search loss distribution.

configuration. Figure 3 shows the distribution of MSE for
the hyperparameter configurations tried.

Training is performed in batches (of size 32) with se-
quence lengths of size 32, which requires clever arrange-
ments of the input matrix to properly make use of Keras’
stateful mode for LSTM modules. We found a sufficient
number of burn-in steps —point at which the hidden state
outputs meaningful history-embedded features— by em-
pirically evaluating errors in the train set.

4.2 Computational Setup

We use TensorFlow [1] and Keras [3] as our deep learn-
ing library. The machines we used ran OS X without
Tensorflow-compatible GPUs. Thus, all code was run on

LSTM

Linear regression

e val
o lest

Predicted values

-02 00 02 04
True values

02 00 02 o04
True values

Figure 4: Scatterplot of validation set (true and predicted
values) for LSTM and Linear Regression.

1.6 GHz Intel Core i5 CPUs. Model training takes around
15 seconds per epoch, totaling around 10 minutes for each
end-to-end optimization run.

5 Results

Figure 4 shows the scatterplots of predicted versus the true
values over the dev and test sets for LSTM and Linear
Regression. All results shown are in a scale 1000 times
larger than the true exchange rates, as this was found to
yield model training easier by matching the output and
target variances. Given the overall diagonal shape of the
data cloud for LSTM (Left) along the 45-degree line, we
can see the network fits out-of-sample data reasonably
well. On the other hand Linear Regression (Right) shows
a more reduced positive trend for the extremes of the dis-
tribution (where there is potential for higher rewards) .

To further analyze the performance of our model, we
show in Table 1 three measures of goodness-of-fit. No-
tably, the hit rate —the proportion of times predictions
have the correct sign— is around 60% for out-of-sample
data. R? appears stable across the train, dev and test
sets, which is remarkable given how different volatility
behaves across these periods.’

SThis difference between dev and test is not possible to correct for
since we work with time-series analysis. However, we plan to expand
this data in the future so that dev and test reflect similar trends.

RMSE R? Hit rate
train | 0.07437 12.40% 59.44%
dev | 0.03037 12.51% 59.23%
test | 0.02319 12.19% 58.43%

Table 1: LSTM model performance measures.

5.1 Comparison to Baseline Models

Table 2 shows the performance of the LSTM model com-
pared to the performance of two baseline models: linear
regression and an autoregressive model with exogenous
variables (ARX). All covariates and input features in these
models correspond to the same input data fed into the
LSTM network. °

When comparing to other models, results are mixed.
On the one hand, R? sees an improvement from the lin-
ear model to the LSTM. In-sample ARX(1) predictions
also seem to capture a good amount of the model varia-
tion given the high R?, though this might change if the
model had been trained on the train data to a point where
it is comparable to the LSTM. 7 On the other hand, hit rate
is rather low for the ARX model, whereas the linear and
LSTM models show to be of the same order of magnitude.

Performance may not be uniformly superior to the
benchmark due to the reduced number of variables in-
cluded as features. With more input features (for example,
including the space of all exchange rates), a gap between
the linear model and the LSTM network would be more

5We could only test the ARX model insample which gives it an unfair
advantage. However we find that even if this is the case it does no better
in terms of profit to the LSTM

7Computational resources and the lack of optimized packages made
it not possible to learn the ARX(1) model on the train data.

RMSE Hit rate R?
Linear | 0.0234 58 % 10.37%
LSTM | 0.0232 58% 12.19%
ARX(1) | 0.0224 46% 17.52%

Table 2: Model performance measures for the test set.
*Note: ARX(1) measures were computed in-sample only
for the test data. Its measures are therefore used as a ref-
erence only.

evident as the deep network would allow for complicated
interactions in the cross-section of exchange rates. Such
an analysis is left for future work.

6 Trading Strategy

Previously we observed the LSTM model performs sim-
ilarly to the linear model in determining the sign of the
next movement. In trading, however, we are concerned
about performance measures in specific parts of the pre-
diction distribution. In this section, we show through a
trading experiment how the Deep Learning model cap-
tures tail phenomena better than baseline models and is
able to yield the highest profits.

Our simulation consists in having at each minute the
opportunity to submit an order for either entering a long
(buy) or short (sell) position on the BTC-ETH ratio. We
define three trading strategies that used the predictions ob-
tained from the previous models:

1. Threshold Strategy: For this strategy the agent buys
(sells) Ethereum if at any given minute if the ex-
change rate is expected to go against (in favor) in
a magnitude higher than a given threshold 7. The
agent reverses the transaction by buying back Bit-
coin when the model predicts the exchange rate will
revert back.

2. Random Strategy: At each time period ¢ the agent
shorts or longs her position randomly.

3. Long-Short Strategy: Here, the agent alternates be-
tween buying and selling the base crypto. The ratio-
nale behind this strategy is that, in our data, roughly
60% of return movements are followed by a move-
ment in the opposite direction.

Figure 5 shows the results for the simulation on the test
portion of the dataset (i.e. October 1 through October 31,
2018). To make strategies’ profit-and-loss (PnL) distri-
butions comparable, all transaction magnitudes are per-
formed with the equivalent of one unit of Bitcoin. The
threshold chosen for all strategies was based on the me-
dian of changes experienced on the train data.

The only two strategies observed to be skewed to the
right —and thus make profits— are the Long-Short strategy

Trading strategy gains per transaction

\ —— LSTM Threshold
- Random
—— Long-Short
= Linear Threshold
—— SARIMAX Threshold

Density
o (] N w » w [«)] ~ [e4]

Figure 5: Profit and loss (PnL) distributions for each strat-
egy.

Strategy Mean Std. dev. % Positive
LSTM Thres. | 0.026 0.108 59.55%
Linear Thres. | -0.035 0.102 36.39%

ARX Thres. | -0.036 0.104 36.03%

Random -0.001 0.045 15.69%

Long-short 0.010 0.012 53.86%

Table 3: Simulation statistics for each strategy. Quanti-
ties are in BTC. ‘% Positive’ refers to the proportion of
transactions resulting in a strict profit.

and the LSTM Threshold Strategy. A closer look at Figure
5 reveals the LSTM strategy also has a lighter tail on the
negative end. The linear and ARX threshold strategies
have negative mean, which supports the idea that hit rate
is not similar to the DL model for observations with large
magnitude movements.®

Table 3 shows statistics on each transaction’s profit and
loss. We confirm the LSTM Threshold strategy yields the
highest expected return, with a standard deviation com-
parable to the Linear and ARX-based strategies. Further,
expected returns are negative or centered around zero for
the random and baseline strategies. Finally, the highest-
achieving rate of positive transactions —by a considerable
margin— was the LSTM strategy.

8This phenomenon is visible from the comparison of the linear model
to the LSTM scatterplots in Figure 4.

7 Conclusion

Our study showed that the advantages of Deep Learning
over traditional methods are more intricate than just im-
provements in prediction performance. Although classi-
cal statistical tools (Linear Regression and ARX model)
performed similarly in terms of prediction, Deep Learning
forecasts outperformed these in terms of expected earn-
ings following a threshold-based strategy. This, we find,
is due to DL having superior predictive performance at
the tails of the returns distributions. Classical methods,
on the other hand, had better prediction accuracy close
to the center of the distribution, where the earnings are
lower.

Our results also showed that there are grounds for prof-
itable trading strategies in the crypto markets. Although
the returns we obtained are in the order of the “risk-free”
interest rate (Treasury Bonds, for example), the fact that
one can make a profit in expectation has interest of its
own. In particular, due to the small amount of covariates
we used in this analysis we think there is possibility for
further improvements when working with richer datasets.

8 Future Work

With more time and computational power the following
points could be further analyzed.

e Perform the analysis in periods with different volatil-
ity regimes. We were constrained by the availability
of data in the Binance platform but are actively col-
lecting more data to expand our analyses in the fu-
ture.

e Crypto should further provide the chance to study
trading behavior from the actors themselves. This
would require a lot of work in combining the trading
datasets with the ledger (the crypto datasets) infor-
mation.

e Expand our analysis with more data to further high-
light the capacity of deep learning frameworks to
learn complex feature interactions and boost perfor-
mance. Possible expansions include high frequency
stock market data to estimate the relationship be-
tween these two markets, as well as exchange rates
from other cryptocurrencies.

References

(1]

(2]

(3]

(4]

(53]

(6]

(7]

(8]

(9]

(10]

(11]

ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E.,
CHEN, Z., CITRO, C., CORRADO, G. S., DAVIS, A.,
DEAN, J., DEVIN, M., GHEMAWAT, S., GOODFELLOW,
1., HARP, A., IRVING, G., ISARD, M., J1A, Y., JOZE-
FOWICZ, R., KAISER, L., KUDLUR, M., LEVENBERG,
J., MANE, D., MONGA, R., MOORE, S., MURRAY,
D., OLAH, C., SCHUSTER, M., SHLENS, J., STEINER,
B., SUTSKEVER, I., TALWAR, K., TUCKER, P., VAN-
HOUCKE, V., VASUDEVAN, V., VIEGAS, F., VINYALS,
O., WARDEN, P., WATTENBERG, M., WICKE, M., YU,
Y., AND ZHENG, X. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software avail-
able from tensorflow.org. 3

BAao, W., YUE, J., AND RAO, Y. A deep learning frame-
work for financial time series using stacked autoencoders
and long-short term memory. PloS one 12, 7 (2017),
e0180944. 1

CHOLLET, F., ET AL. Keras, 2015. 3

GULLAPALLL, S. Learning to predict cryptocurrency price
using artificial neural network models of time series. 1

HOCHREITER, S., AND SCHMIDHUBER, J. Long short-
term memory. Neural computation 9, 8 (1997), 1735-
1780.

Huisu, J., LEE, J., Ko, H., AND LEE, W. Predicting
bitcoin prices by using rolling window lstm model. 1

TOFFE, S. Batch renormalization: Towards reducing mini-
batch dependence in batch-normalized models. In Ad-
vances in Neural Information Processing Systems (2017),
pp. 1945-1953. 2

KINDERIS, M., BEZBRADICA, M., AND CRANE, M. Bit-
coin currency fluctuation. 1

MCNALLY, S., ROCHE, J., AND CATON, S. Predict-
ing the price of bitcoin using machine learning. In Par-
allel, Distributed and Network-based Processing (PDP),
2018 26th Euromicro International Conference on (2018),
IEEE, pp. 339-343. 1

SERMANET, P., EIGEN, D., ZHANG, X., MATHIEU, M.,
FERGUS, R., AND LECUN, Y. Overfeat: Integrated recog-
nition, localization and detection using convolutional net-
works. arXiv preprint arXiv:1312.6229 (2013).

SILVER, D., HUANG, A., MADDISON, C. J., GUEZ, A.,
SIFRE, L., VAN DEN DRIESSCHE, G., SCHRITTWIESER,
J., ANTONOGLOU, 1., PANNEERSHELVAM, V., LANC-
TOT, M., ET AL. Mastering the game of go with deep
neural networks and tree search. Nature 529, 7587 (2016),
484-489.

[12] WANG, L., AND GUPTA, S. Neural networks and wavelet
de-noising for stock trading and prediction. In Time Se-
ries Analysis, Modeling and Applications. Springer, 2013,
pp. 229-247. 1

Code

The private GitHub repo can be found at https://
github.com/bernardoramos/cs230project.

