Fine-Grained Sentiment Analysis of Restaurant
Customer Reviews in Chinese Language

Suofei Feng! suofeif@stanford.edu
Eziz Durdyev eziz@stanford.edu

Abstract—Chinese language processing is a challenging
topic in the well-developed area of sentiment analysis. In
this project we explore Long Short-term Memory neural
network with different word representations for the fine-
grained, or aspect-level sentiment analysis of restaurant
customer reviews in Chinese language. There are 20
aspects for classification, each representing one type of
target information in the reviews. We separately train
one model for each element. The accuracies, weighted F1
scores, and confusion matrices are referred to evaluate the
models. The results of different models vary across the 20
aspects.

Index Terms—Chinese language, NLP, LSTM

I. INTRODUCTION

HE era of information explosion, brings an increas-

ing demanding on the ability to extract core mes-
sage from billions of records of data. Sentiment analysis,
or opinion mining, is widely applied to extracting and
studying subjective information in texts. By quantifying
the opinions or attitudes in a large bulk of texts in a
few minutes, sentiment analysis has gained popularity
in various business scenarios for retrieving customer
responses. In recent decades, considerable progress has
been achieved in sentiment analysis of English language.
However at the same time, a similar development com-
parable to the growth of market is not seen in Chinese
language applications [1]. In our project, we propose to
implement a fine-grained (aspect-level) sentiment analy-
sis of restaurant customer reviews in Chinese language.
The topic and data come from the 2018 AI Challenger
competition [2].

The inputs are reviews about restaurants in Chinese
language. The task is to classify each piece of review
text into 4 classes (“not mentioned”[-2], “negative”[-1],
“neutral’[0], “positive”’[1]) under 20 aspects. Each aspect
(or element) represents one type of information about
the business. In the scope of each model architecture,

'Department of East Asian Languages and Cultures, Stanford
University.

we develop and train separately one model for each of
the aspects.

II. RELATED WORK
A. Approaches to Sentiment Analysis

Pang and Lee [3] briefly summarize the history of
sentiment analysis, and describe the related works as
computational treatment of “opinion, sentiment, and sub-
jectivity in text” (p8). Early machine learning approaches
towards sentiment classification use unigrams (single
words) and n-gram as features for subjectivity detection,
and SVM, MNB (Multinomial Naive Bayes), etc. for
classification [4] [5].

Recent years have seen a substantial progress in NLP
tasks with neural network approaches. LSTM is pop-
ular in sequence modeling for sentiment classification
because of its advantage against gradient vanishing or
exploding issues in long texts. Wang et al. [6] proposed
an attention-based LSTM model with aspect embedding
for aspect-level sentiment classification. They experi-
mented with restaurant customer reviews in English,
and implemented a 3-class (positive, negative, neutral)
classification on 5 aspects: food, price, service, am-
bience, anecdotes/miscellaneous. The accuracy of this
model improved by 2% compared with standard LSTM
model. However, considering the different natures of
Chinese language, and the large number of aspects for
classification (20), we decide to start with standard
LSTM model for the neural network approach in this
project.

B. Chinese NLP Researches

A review of sentiment analysis in Chinese language
was given by Peng et al [7]. Apart from conducting
sentiment analysis directly on Chinese language, there
is another approach: transform the task to sentiment
analysis on English language by machine translation.
In our project, we conduct a mono-lingual experiment
by directly extracting features from original Chinese
language. This is mainly because that the style of our

input texts is highly colloquial and context-specific,
which might lose information in the process of machine
translation. According to this article, good results were
gained from a combination of neural network (word2vec)
for word representation and SVM for classification.
Peng et al. also mentioned the different techniques for
segmentation. As Chinese language does not have space
between words, it is necessary to use segmentation tools
to extract words as the basic units of semantic meaning.
They summarized that Jieba had a high speed and good
adaptation to different programming languages. For these
reasons, we decide to use Jieba as our segmentation tool.

I1I. DATASET AND FEATURES
A. Dataset

We use the data sets provided by AI challenger
official [2]. The training and validation data are manually
labelled. They also provided test dataset without labels.
In the training dataset, there are 105,000 records of
reviews, with labels of 4 classes {”positive”[1], "neu-
tral”’[0], “negative”[-1], "not mentioned”[-2]} on 20 as-
pects/elements under 6 categories. The validation set has
14998 records of reviews. For the aim to evaluate our
models by ourselves, we split the validation set into a
smaller validation set (first 7500 records in the original
validation set) and a test set (rest 7498 records in the val-
idation set) with true labels. The class distributions of the
20 aspects are very similar across all three datasets. Table
I shows all the elements and corresponding categories.
Here is an example input text. Because of the limited
space, we just put part of the review and its translation
here:

"ML, BSEARIEERE, T KRSV EE
&, KWZT . —EREFIFXTEEEEEADR
7, KRS TR EZE -1 IRKILE -
ENEEEEEABERMER, AR, PR
A RHAKE, BEEH, BEARE®R A LEHER
7.

Translation:

”Ha ha ha, the lollipop is soooo cute. I won the ’free
meal prize’ on Dazhongdianping [author’s comment:
similar to Yelp], this is so cute. I have been always
curious about what the lollipop is like. Dazhongdianping
gave me the bumpkin this opportunity to open my eyes.
The introduction said it was made using German candy,
not too sweet. The photo in the middle is made of
glutinous rice, edible. It is really high-end...”

A glance of Google Translation:
“Hey, the lollipop of the dead man, the overlord meal
of the public comment, so cute...”

TABLE I: Elements

traffic

Location ; : .
distance from business district

easy to find

wait time

Service waiter’s attitude

parking convenience

serving speed

price level

Price :
cost-effective

decoration

Environment noise

space

cleanness

portion

Dish taste

look

recommendation

Others overall experience

|
|
|
|
|
|
|
|
|
| discount
|
|
|
|
|
|
|
|
|
|

willing to consume again

B. Feature Extraction

The main challenge in our project is preprocessing
our data. Chinese language is difficult to accurately
segment because of the absence of space, variant lengths
of words, and high flexibility of making new words.
We apply same preprocessing approaches to the training,
validation, and test dataset. With reasons presented in the
related work section, we use Jieba cut for segmentation.
After segmentation, we gain three lists of word lists
produced by segmenting the lists of sentences.

Word2Vec models are used to produce word repre-
sentations for the classification task. We explore two
types of Word2Vec models: model A being trained
on segmented train, validation, and test text data, and
pretrained model B by Tencent Al Lab [8]. The model
A is trained using Gensim under Continuous Bag-of-
Words mode. This model assumes that similar words
share similar contexts, and thus optimizes the predictions
of target word given a number of context words. The
optimization objective is given here [9]:

minimizeJ = —logP (We|We—my vy We—1, Wet1y +ey Wetm)

(1)
where w, is the target word, we—,, ..., Wetpm, are context
words, and m is the context size.

List of 105,000
sentences

Jieba Segmentation

List of 105,000
word lists

Gensim Word2Vec (CBOW)

Min count: 3

300-d w2v model Window: 5

Vocabulary

(size: 6573) =

Embedding
Matrix

Indices Matrix
(105,000 * 400)

Fig. 1: Preprocessing Flowchart

We train a Word2Vec model following the instructions
in [10], and produce a vocabulary (6573) and embedding
matrix (6573 x 300) of the same word order with the vo-
cabulary. Pad token and unknown-word token are added
to the vocabulary as well as the embedding matrix.

The model B has a vocabulary of size 8824330, and
its embedding dimension is 200. To increase the training
speed, we slice out the vectors of the words present in the
training, validation, and test datasets. This forms a mini
embedding matrix of size (7068 x 200). As the input
texts are customer reviews, which are inclined to collo-
quial. This means a limited sophistication in the lexicon
of the input data, and further a limited improvement by
training on unknown tokens. We therefore decide to also
slice out the word vectors of words in test dataset for
the embedding matrix.

The next step is to digitalize the input texts. We
replace the words in each sentence (after segmented)
with their indices in the vocabulary. All the sentences
are padded or cut to a length of 400. The outputs are
three matrices for train (105000, 400), val (7500, 400),
and test data (7498, 400). Fig 1 shows the procedures of
preprocessing training data using model A.

— Output

False

Class Label

Embedding Layer (6573 * 300):

Trainable

Dense (4):

LSTM Layer {x2): Activation: softmax

Units: 128
Dropout: 0.5

[Input: 400 * 1 word indices

Fig. 2: Two-Layer LSTM Model

IV.

A. Baseline

CLASSIFICATION MODELS

The baseline model is provided by AI Challenger
official [11]. The feature is extracted by TF-IDF frame-
work, whose values for representation are based on
the frequency of a word in a given document. The
classification model is RBF SVC. The average F1 score
across the 20 elements is around 0.2.

B. LSTM

LSTM, or Long Short-term Memory network, is a type
of recurrent neural network (RNN) to process sequence
of information, by feeding the output of preceding neu-
rons to subsequent neurons. Unlike traditional RNN,
LSTM networks are not vulnerable to gradient explosion
or vanishing when dealing with long sequences of data.
This is achieved by forget gate, input gate, and output
gate in each hidden unit. These gates decide how much
information to let through, and therefore can connect
information with a wide gap in between [12].

We firstly build a many-to-one LSTM model for
each of the 20 elements. Fig 2 shows the structure of
the model and the hyperparameters. The inputs are the
output indices from preprocessing step. The labels are
transformed to one-hot vectors, each as a (1 x 4) row
vector. The embedding matrix from each of the two
embedding models is used as the untrainable weights for
the embedding layer. We add arbitrary class weights to
address the class imbalance problem. The loss function
is categorical cross-entropy:

n 4
L(9) = —% Z Z yijlog(pij)

i=1 j=1

2

with n the number of examples, j the class ID, y the
true label, and p the predicted probability. Accuracy and
weighted F1 score are the evaluation metrics. Based on

the outcomes of the previous model, we renew the model
architecture and hyperparameters for further training on
specific elements. The updates are discussed in the next
section.

V. TRAINING AND RESULTS
A. Training

After tuning on a subset of 500 training records and
100 validation records, we choose 0.5 for LSTM layer
dropout and recurrent dropout, 128 for number of hidden
units, 128 for batch size, and Adam for optimizer with
learning rate of 0.001, B; of 0.9, B of 0.999. At the
beginning we tried 50 epochs for all the elements, and
found most of them converge after around 14 to 15
epochs. We therefore decide to train for 20 epochs. As
we have 105k records in the training dataset, batch size
of 128 will make the training process comparatively
fast. Adding different arbitrary class weights to different
elements does not have clear improvement. The upper
left plot of Fig. 3 gives the accuracies and losses of
training and validation of the first element using model A
for language representation. The training loss is updated
for every batch, and therefore is much more unstable
than validation loss.

At the beginning, we applied early stop (monitor:
validation loss; patience: 3) to the LSTM using Tencent
mini embedding. Soon we found many of the models
stopped training after 3 or 4 epochs without reducing
the loss. We then cancel the early stop for this type of
models. Figures in Fig. 3 show a clear contradiction of
convergence speed between A and B language models.
To make this report concise and short, we will not report
all the training details and statistics of all the 20 elements
here.

A possible source for this different convergence pro-
cess is the embedding matrix. Firstly, the vectors in the
matrix of model B are from different corpus other than
consumer reviews. This will prolong the process for the
classification model to adapt the special theme of the
input corpus. Secondly, a larger embedding size (300)
of model A provides finer information of the input, and
therefore makes it easier to classify. In the subsequent
training and modifications, we focus on the model using
representation A.

Based on the results of the models using representation
A, we select 9 elements for further training. The selec-
tions are made partly due to no convergence within 20
epochs, partly due to improper class weights. We firstly
train them for another 20 epochs without changing the
model structures. The improvement is not clear. We then
increase the number of hidden units to 256 in LSTM

Traffic Convenience with A Traffic Convenience with B

00 25 s0 75 100 15 150 175 00 25 s0 75 100 15 150 175
Epo Epo

Distance from
Business District with B

Distance from
Business District with A

— Train — Train
12 val

o W /
0 N o

00 25 S0 75 100 15 150 175 00 25 s0 75 100 15 150 175
Epoch Epoch

Fig. 3. These are training processes of first two elements with
different word representations. In each plot, red line represents
training loss; green line represents validation loss; blue line
represents training accuracy; orange line represents validation
accuracy.

layers, and reduce batch size from 128 to 64 or 32. For
those with batch size of 64, we increase the learning rate
from 0.001 to 0.01 with a decay rate of g55q5. These
modifications efficiently speed up the convergence. An
example is shown in Fig. 4. For clarity, we will refer
to this newly modified model as LSTM-256, the old
one with representation A as LSTM-128 A, the one with
representation B as LSTM-128B.

i
val

00 25 50 75 100 125 150 175

Epoch

Fig. 3: Fig. 4. LSTM-256 model on Distance from
Business District. Red line is training loss; green line
is validation loss; orange line is training accuracy; blue
line is validation accuracy.

B. Results

Our metrics include accuracy, weighted F1 score,
and confusion matrix. Accuracy is a straight-forward
measure of the performance of the models. However,
by observation we find a serious class imbalance across
all elements in the training, validation, and test data. We

therefore introduce weighted F1 score for reference. Here
is the function for weighted F1 score:
. L N
weightedFy = Z:l WFU
J:

3)

where N, () is the number of true instances of class
7, N (T) the total number of true instances, F; the F1
score of class j. This measure takes class imbalance into
account. Table II shows the average test accuracies and
test weighted F1 scores across the 20 elements from the
three models.

TABLE II: Test Statistics

Model Avg. Accuracy and | Avg. W. F1 Score
Variance and Variance
LSTM-128A4 0.656, 0>=0.023 0.658, 0°=0.025
LSTM-128B 0.376, 02=0.054 0.288, 02=0.065
LSTM-256 0.670, 02=0.021 0.674, 02=0.022

The test statistics of LSTM-256 are averages of
retrained elements with unretrained elements. All the
three models have better performances than the baseline,
though LSTM-128B is well below satisfaction. The
main problem with this model, as stated in the previ-
ous section, is the speed of convergence (perhaps need
more than 50 epochs for some of the elments to start
converge). It is clear that the LSTM-256 performs better
than LSTM-128 A in terms of accuracy and weighted F1
score, with faster convergence in 20 epochs. Confusion
matrices of the second element from LSTM-128A and
LSTM-256 will give a tangible idea of the multi-class
classification quality:

(4022 40 0 1960
13 21 0 12
E2s=| g 1 ¢ 30
62 2 0 1327
(4547 0 0 1475
31. 00 15
E256 =113 0 0 26
136 0 0 1255

The first line of E2i98 means that there are 4022 of
class -2 being predicted correctly, 40 of class -2 being
predicted as class -1, and 1960 of class -2 being predicted
as class 1. According to these two matrices, it is clear
that LSTM-256 is more biased to dominating classes,
while performs better on the most dominating class. But
if one is more concerned with negative attitude, LSTM-
128A is a better choice. Also, though neutral attitude is
difficult for both models to detect, LSTM-256 is more
advantageous as 'neutral’ and 'not mentioned’ are more
similar than ’neutral’ and ’positive’.

Generally the LSTM-128A model performs well
when sentiment features are apparent:

. CESE IR RRAE R B RS &/ ME TR
K RIBZBHIRA PEIE T FRBEGRF AT IRSHR
T ERENR . FEAARL REE EFEVGIE
SR BRER Iz H HEUEHHR BERE
W% ... BT RAOAGRREEEERERERIT I rEE
TRBEL R BRI E BIRGEE3295TT Ei
HERNE LUEE &2 H L

(Rough) Translation:
”...Environment is pretty good, suitable for couples,
warm feeling. It’s nice to have afternoon tea. Service is
good, too... Not so many people in the noon. It’s quiet.
Really like the atmosphere. About food, ... pizza really
good... The pork combo has a large portion...Drinks are
tasty. Must try next time. Using Dazhongdianping will
give you 5% discount, a good bargain. Will come often
in the future.”

The predictions results are shown in Table III.

TABLE III: Predictions of the Example Text.

1: -2 2: -2 3:-2 4: -2 531
6: -2 7. -2 8: -2 9:-2 | 10: 1
11: -2 | 12:1 13:-:2 | 14:-2 | 15:1
16: 1 17:-2 | 18:-2 | 19:1 | 20: 1

In general, class imbalance is the main obstacle to a
significant improvement of performance. Class weights
might be a good strategy, but the trade-off between pre-
diction of sub-represented classes and overall accuracy
requires more sophistication. On the one hand, higher
precision in class weight assignments, e.g. 1/(number
of class-j examples in the training data) might further
improve the quality. On the other hand, data augmen-
tation such as bootstrapping minor classes worths a try.
Because of the demand on the integrity of context to
judge about the sentiment, cropping is not suitable in
this case.

VI. CONCLUSIONS AND FUTURE WORKS

Apart from the aspects mentioned in the previous
section, this task can also be improved in the following
aspects: 1.) collect data with higher label quality (some
examples are difficult to classify even for human beings);
2.)improve the quality of language models with contex-
tual representation, e.g. BERT; 3.) we might also benefit
from applying attention mechanism for long input texts
to extract key information.

VII. CONTRIBUTIONS

Suofei is responsible for preprocessing data, construct-
ing and training LSTM models, making the poster, and
writing the report. Eziz did not enroll in this class, but
still provided generous help for the completion of this
project. We collaborated on CS229 course project under
the same topic, and applied different methods to this task
for the two courses. Both reports are submitted to the two
classes.

VIII. CODE

The code can be found at:

https://github.com/suofeif/CS230

This is a private repo. We have added cs230-stanford
as the collaborator.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]
(11]

[12]

REFERENCES

H. Peng, E. Cambria, and A. Hussain, “A review of sentiment
analysis research in chinese language,” Cognitive Computation,
vol. 9, pp. 423-435, 2017.

Ai challenger 2018. [Online]. Available: https://challenger.ai/
competition/fsauor2018

B. Pang and L. Lee, “Opinion mining and sentiment analysis,”
Foundations and Trends®) in Information Retrieval, vol. 2, no.
1-2, pp. 1-135, 2008.

E. Boiy and M. Moens, “A machine learning approach to senti-
ment analysis in multilingual web texts,” Information Retrieval,
vol. 12, no. 5, pp. 526-558, 2009.

R. P. . S. H. Manning, C. D., Introduction to information
retrieval. Cambridge University Press, 2008, ch. 13.

H. M. Wang, Y. and L. Zhao, “Attention-based lstm for aspect-
level sentiment classification,” Proceedings of the 2016 confer-
ence on empirical methods in natural language processing, pp.
606-615, 2016.

C. E. Peng, H. and A. Hussain, “A review of sentiment analysis
research in chinese language,” Cognitive Computation, vol. 9,
no. 4, pp. 423-435, 2017.

Y. Song, S. Shi, J. Li, and H. Zhang, “Directional skip-
gram: Explicitly distinguishing left and right context for word
embeddings,” NAACL (Short Paper), 2018.

Cs 224d course material. [Online]. Available: https://cs224d.
stanford.edu/lecture_notes/notes1.pdf

W. Gong. (2017) Chinese word vectors. [Online]. Available:
https://primer.ai/blog/Chinese- Word- Vectors/

Ai challenger 2018 baseline. [Online]. Available: https:
//github.com/AIChallenger/AI_Challenger_2018

C. Olah. (2015) Understanding Istm net-
works. [Online]. Available: http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

