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Abstract

The ability to quickly distinguish malicious packets from normal packets in a
network is becoming an important line of research. The goal is to drop packets
whose metadata indicates that they are not coming from a benign source. We
employ machine learning to make these decisions quickly on both CPUs and
FPGAs while exploring two different classes of deep learning architectures to
achieve this task. We use standard networks with multiple fully-connected layers,
as well as lattice regression networks, which are an emerging class of networks that
are designed to provide quick inference, quick training, and intuitive visibility in
the intermediate layers. We show that lattice networks are able to exchange some
accuracy for inferences that take less than 10 nanoseconds. In addition, they allow
an order of magnitude less malicious packets into the network.

1 Introduction

The focus of our project is to use FPGAs to accelerate neural network applications. We are partic-
ularly interested in lattice regression networks (1), as they are good candidates for tasks with tight
latency constraints and expose a level of debuggability and visibility that is not present in other
ML architectures. Lattice regression is a new network architecture currently used by Google for
applications such as ranking and ads.

The task that we will focus on in this project is network anomaly detection. We believe anomaly
detection to be a good use case because data center networks need to classify each and every packet
that enters the network while maintaining high data throughout and low latency. In this task, packets
must be labelled as either "normal" or "malicious" so that the bad ones can be dropped from the
network. In a real-life setting, misclassifying malicious packets as normal is very bad, while dropping
normal packets is wrong but not the worst kind of mistake.

Hardware acceleration is a promising tool for high-performance ML and an FPGA implementation
of lattice regression has not been done before. We believe that we can prove lattice networks map
well to these devices, resulting in an impactful result for both the machine learning and hardware
acceleration communities. There are a number of features of the algorithm that make it a much better
fit for hardware rather than software. Furthermore, FPGAs are more energy-efficient than CPUs
because they remove a lot of the overhead by baking instructions directly into hardware.

2 Related work

2.1 Lattice Networks

The bulk of work on lattice networks has come from the Glassbox team at Google (1; 7; 8; 9). They
are theory based papers so we take advantage of their description of lattice networks to build our
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models. However, they have little to no implementation or systems level details. As such, we believe
this is one of the main contributions of our work. There are several key equations that we use from
their work to build and train our models. First, actual feature inputs are mapped to learned values
using an input calibration layer built from shifted ReLUs:

K
c(z[d];a,b) = Z alk]ReLU (z — alk]) + b[1]
k=1

Typical lattice networks will have a calibration layer for input features followed by the actual lattices.
We then use their formulation for multilinear interpolation across the k vertices of a lattice structure
where vy, are selectors that have a value of 0 or 1 and selectively remove certain vertices. x[d] are
input features to the lattice:

D-1

br(k) = H x[d]vk[d](l _ x[d])l—vk[d]

d=0

The results of the interpolation are applied to the lattice parameters 6:

f(a) =0T (x)

For training, the objective function used is similar to the traditional deep learning objective functions
which apply a loss function over n points with a regularization function R(6):

0 = argming Z I(y;, 07 p(x:)) + R(6)

i=1

Finally, the lattices lend themselves to a different type of regularization called torsion regularization
which punishes twisting (resulting from overfitting) of the lattice structure by checking differences in
adjacent vertex parameters (7, s, t, u):
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2.2 Intrusion Detection with Machine Learning

There are very few papers using deep neural networks as a learned intrusion detection system. A
good baseline that we found was from Mane et al. (2). However, this is a very simple network and in
our project, we explore some different topologies in addition to the one shown in this paper and see
how it affects accuracy. There is more literature on using traditional machine learning techniques
such as support vector machines but this is outside the scope of our project.

2.3 FPGAs and Spatial

There is no prior literature on mapping lattice networks to FPGAs. However, there is more general
work mapping pattern based applications to FPGAs (5; 6). We use a language called Spatial to take
advantage of these techniques (4). Spatial is a high level hardware description language embedded
in Scala that would allow us to easily produce synthesizable Verilog. We utilize this embedding to
metaprogram Spatial kernels in Scala that could be automatically wired together to form the whole
network.

3 Dataset and Features

We are using the 1999 KDD Cup Dataset for this project (10). This dataset consists of 743MB of
network data from MIT Lincoln Lab over the course of 9 weeks. Despite its age, it remains the
primary dataset for anomaly detection since no data set of this scale has since been made public. The
malicious packets have 14 different types of attacks spread across 4 categories:



e DOS: Denial of service attacks
e Probes: Probing attacks that look for vulnerabilities
e R2L.: Unauthorized access from remote machines

e U2R: Unauthorized access to root privileges

The data points themselves are not full packets but information about the packet spanning three
categories. There are connection level features, server level features, and traffic features collected
over a two second window. The features in the dataset are a combination of strings, integers, and
floating point numbers, and the labels are strings. For FCNNs (fully connected neural networks),
we preprocess the dataset by converting strings to integers based on an arbitrary mapping, and then
treat all numbers as floats so that the deep neural network architectures are compatible. The lattice
networks don’t require this preprocessing because the input calibrators perform this mapping with
learned parameters.

We have about 5,000,000 points in the dataset and we chose to use 2% for training, 2% for dev, and
the rest for testing. The reason for this unusual distribution is because a claimed property of lattices
is to generalize from very small amounts of data. One tricky thing about the dataset is that some of
the attacks have very few data points. This is because certain kinds of attacks are rare. Some attacks,
such as smurf, involve flooding a network to achieve DoS, so there are many packets with these labels.
We considered data augmentation but were unable to find a meaningful way of mixing and matching
properties of each data point to generate new data without making unsubstantiated assumptions about
attack types. For example, a buffer overflow should have a larger payload because it contains shell
code but this is not always true and it is difficult to back this up with literature so we left the data set
as is.

4 Methods

In this problem, we chose to only consider the number of malicious packets misclassified as normal
for our evaluation metric (false negatives). This is because there is a much bigger penalty in the
real world for permitting malicious packets than for dropping normal packets as malicious (these
would simply be resent by the client). As a result, our primary metric was recall because it punishes
false negatives only. The misclassification rate of normal packets is also important for a functioning
network (a network that drops all normal packets is very useless), but we decided to put much more
emphasis on the opposite problem.

4.1 FCNN (Fully Connected Neural Networks) Construction and Tuning

Our baseline for this project was standard, fully connected, multi-layer FCNNs. Our FCNN was
originally based on the simple FCNN described in (2). However, we tried several variations on the
models to explore how layer depth affected accuracy. Because of the processing rate requirement,
we were constrained on how complex the networks could be. We had to sacrifice complexity (and
therefore inference accuracy) for inference latency. This left us with a few knobs in terms of choosing
FCNN architectures: depth of the network and width of each layer. We swept these parameters
coarsely to get an understanding of the design space and how different designs affect accuracy
and runtime. We used the ADAM optimizer (equation not shown for lack of space) along with a
categorical crossentropy loss function, learning rate of 0.001, and mini-batches of size 16.

When implementing the FCNNs on the FPGA, we had a few more hyperparameters to work with,
including parallelization factors, pipeline factors, loop ordering, and tiling parameters. We found the
the best performing hardware designs were the ones that fused the linear function with the activation
function for each layer into a single operation. Each fused layer of the network was pipelined, which
improves throughput of the network at the expense of latency. The parallelization factors were chosen
to be larger in the layers with more neurons as this is better for amortizing the cost of the resulting
deep reduction trees. Tiling factors were chosen to fit the majority of the problem on-chip in order to
get the most benefit from the DRAM controller and short latency for on-chip memory accesses.



4.2 Lattice Network Construction and Tuning

We first started our exploration of lattices with simple hyperparameter sweeps based on existing
models used by Google. They presented a model that would predict income of an individual based
on various characteristics taken during a census (13). Because this shared characteristics with our
problem (high dimensional inputs with interactions between small sets of inputs) we used their model
as a basis and started with lattices of size two. We chose the rank of each lattice based on simple
inspection of the data set features. We noticed that sets of features of size three to five should have
some correlation (for example, there are four different features based on same host connections) and
as such we set the rank of each lattice to be four. Next we performed a geometric parameter sweep
of both the learning rate as well as the number of lattices. We found the optimal set to be 16 to 32
lattices with a learning rate of 0.02. Our final set of architectures involved a layer of calibrators
(one per feature) followed by a layer of lattices (16 or 32) and a reduction layer that combined all
the results together and assigned a score that was compared against a threshold for anomalies. We
noticed that we tended to overfit as evidenced by a high train accuracy and subsequent dropoff in
test accuracy. To this end, we increased our torsion regularization from 0.002 to 0.2 in a geometric
fashion. We found that this had little to no effect on the test accuracy. We believe this to be a result
of the immaturity in this area. There will probably be more complex regularization schemes in the
future that have larger effects. Similar to the FCNNs we used an ADAM optimizer, a squared error
loss, and mini batches of size 10000 as recommended by the literature and existing models.

When implementing the lattice networks on the FPGA, we used some of the same general techniques
as used for the regular FCNNs. However, these networks have unique features that allow us to do
optimizations that don’t make sense for other kinds of networks. We made heavy use of metapro-
gramming to fully pipeline the entire computation. This gives the hardware designs a significant
advantage over software implementations in certain aspects, such as bi-directional sort for simplex
layers and fully-expanded combination trees for hypercube layers.

4.3 Hardware Generation

We created an end to end flow that would allow us to take a model on the CPU and generate a
bitstream that could be mapped onto an FPGA. First, we train a model in a high level deep learning
framework like Tensorflow (11; 13) or TFLearn (12). Then we extract the structure of the neural
network as well as the various parameters into sets of CSV files. These CSV files are then read
into a Scala program that invokes metaprogrammed kernels, populates them with the appropriate
parameters, and wires the kernels together. This process produces a Spatial graph that represents the
network. This graph is passed through the Spatial compiler which in turn produces Verilog. This
Verilog is synthesized using Xilinx tools and mapped to an FPGA.

5 Experiments/Results/Discussion

In this section, we present a variety of designs on both the CPU and FPGA for FCNNs and lattices.
The CPU that we used was an Intel(R) Xeon(R) CPU E7-8890 v3 @ 2.50GHz. The FPGA that we
used was a Xilinx ZCU102 Ultrascale MPSoC @ 100MHz. This FPGA is towards the lower end
of FPGAs in the market today, but is a common board for embedded tasks such as networking and
image processing.

In terms of accuracy, Table 2 shows that lattice regression performs worse than standard fully
connected FCNNSs. This was because of the overfitting problem mentioned earlier. We believe that a
better regularization method may be needed for our lattice networks. Both sets of models had very
high recall which is promising. However, lattices generally have an order of magnitude less false
negatives which is crucial for security. The FCNN architectures always misclassify thousands of
malicious packets as benign (although these errors account for only 0.01% of the test set), which is not
acceptable for a real system. As expected, these mispredicts tended to happen on attack classes with
few samples. We experimented with having more complicated, deep networks versus shallow, wide
networks and found that adding complexity does not necessarily improve accuracy, likely because the
malicious packets don’t need to be processed in a more abstract space (deeper layers) to be detected.

In terms of FCNN runtime, Table 1 shows that the CPU has much more trouble with throughput
as the networks get deeper. However, the FPGA is able to maintain throughput even with deeper



Arch. CPU FPGA  Speedup Single Infer- DSPs LUTs
(infs/s) (infs/s) from CPU ence Runtime (% of (% of
to FPGA on FPGA (ns) FPGA) FPGA)
[10,1] 13358 617238 46.2 162.01 3.97 52.15
[96,1] 10205 114667 11.24 872.1 3.97 51.64
FCNN | [28,28,28,1] 9663 234714  24.29 426.0 7.14 59.39
[10 Layer*] 3182 38389  12.06 2604.8 10.32 73.95
Simplex [16] 17.9 le8 5.6e6 9.99 12.70 17.75
Simplex [32] 18.5 le8 5.4e6 9.99 25.40 24.84
Lattice | Hypercube [16] 17.9 le8 5.6e6 9.99 86.35 21.19
Hypercube [32] 17.5 le8 5.7e6 9.99 172.22 33.74

Architectures are described in format [X, Y] indicating a layer with X hidden units then a layer with
Y hidden units. *The 10 Layer Architecture is [128,128,64,64,64,64, 64,64,32,32,1]

Table 1: Table of Speed Metrics

| Arch. Train Accuracy Test Accuracy False Negatives Recall

[10,1] 0.9999 0.9990 4202 0.9999

[96,1] 0.9999 0.9990 2081 0.9999

FCNN | [28,28,28,1] 0.9999 0.9991 3266 0.9998
[10 Layer*] 0.9999 0.9937 3041 0.9999

Simplex [16] 0.9988 0.7685 253 0.9999

Simplex [32] 0.9970 0.7699 6090 0.9935

Lattice | Hypercube [16] 0.9998 0.7687 377 0.9996
Hypercube [32] 0.9998 0.7686 879 0.9990

Architectures are described in format [X, Y] indicating a layer with X hidden units then a layer with
Y hidden units. *The 10 Layer Architecture is [128,128,64,64,64,64, 64,64,32,32,1]

Table 2: Table of Accuracy Metrics

networks. The component that slows down the FPGA is the widest network. This is because of the
FPGAs ability to fully pipeline packets. While latency may be lower, throughput can be maintained.
These throughput numbers are all acceptable, but unfortunately deeper networks do not result in
better accuracy so this pipelining is not useful for this task. The FPGA implementation of the lattices
showed a huge improvement in speed against the CPU code. This is in part because the CPU code is
written in TensorFlow Lattice which is not yet highly optimized. However, the structure of the lattices
also maps better to hardware because of the abundance of lookup tables and tree structures. The
lattice layers are small enough that they can all be computed in parallel so the latency across models
is constant. They all operate within less than 10 nanoseconds for a single inference making these
models viable for even high end switching devices. We see from the DSP and LUT usage that they
generally require less resources on the FPGA than FCNNs except for hypercubes which require many
DSPs for weighted sum computations. Simplexes are very resource efficient though and emerge as
the single best candidate resource-wise.

6 Conclusion/Future Work

To conclude, we recommend using fully-pipelined lattice regression on FPGAs for tasks with
relatively small feature spaces that require high throughput and low latency. We ran experiments for
two different classes of networks on two different devices to come to these results. We see from the
results that neither lattices nor FCNNs are advantageous across every single metric. The FCNNs
tended to have overall better accuracy while having more false negatives. The lattices, while having
worse test accuracy, usually let an order of magnitude less malicious packets through. In addition,
they had significantly shorter runtimes on the FPGA. High end switch latencies range from 200 to
400 nanoseconds so in the more extreme cases, the lattices are the only option for a machine learning
solution. In the future, we would like to attempt to build networks that combine traditional FCNN
units with lattices to achieve both speed and accuracy. We would also like to see the effect that
monotonicity constraints in embedded lattice networks (3; 9) have in this situation.



Contributions

Both Tushar and Matt worked on all portions of the project. Matt focused more on the standard
FCNN networks for both the CPU and the FPGA. This includes training, hyperparameter search,
FPGA kernel implementations, and data analysis. Tushar’s work was more focused on the lattice
regression networks, for both the CPU and FPGA implementations as well as parameter and structure
extraction. Both students worked together to figure out the most efficient way to implement lattice
inference kernels on the FPGA. Because lattice regression is such a new field, it was challenging
to figure out exactly how to work with it and debug it. The students spent a lot of time running
experiments with these kinds of networks to get a baseline understanding and intuition about them.
We feel that we have a much better understanding of how to manage and succeed in machine learning
projects for tasks and frameworks that are novel and sparsely documented.

We received help from an external member, Nathan Zhang, who is a domain expert in lattice regression
and was able to provide guidance and code support throughout the process. This involved things
like initial setup, making reusable code components for the FPGA, helping us get started with lattice
regression in Tensorflow, and overall guidance on how to navigate the hyperparameter space.

Code

Github Link: https://github.com/pyprogrammer/spatial-lattice

The README in our repository explains how to run both the Python and Spatial portions of our
code. The installation script will install missing python libraries, as well as SBT to run the FPGA
kernels. The repo includes a few sample points from our data set so that it is easy to quickly test the
code. The repo is private so the CS230 Github account has been added as a collaborator.
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