EditGAN: Using Generative Adversarial Networks for
Image Editing

Category: Generative Modeling

Logan Bruns
Stanford University
lbruns@stanford.edu

Abstract

This project is to explore using conditional Generative Adversial Networks for Image Edit-
ing. Primarily around changing, moving, or removing objects in images

1 Overview

The goal of this project is to explore using conditional Generative Adversial Networks (GANs) for Image
Editing. Primarily around changing, moving, or removing objects from images and changing the dimensions
of existing objects. GANs have been demonstrated to be able to generate high quality images. It would be
interesting to see a GAN could be trained to understand an existing image and make a change to that image.
So, generate a replacement portion of the image using knowledge based both of previous training and on the
context of the specific image. In theory, perhaps it should be to extrapolate like a human and continue a fence
behind a person or form a car in the correct orientation for a shape.

This seems to be most likely to be successful if we start with images that are labelled to a pixel level and use
this pixel level semantic mapping both to train the model and to tell the model how to manipulate the image.

In order to train a model based on pixel level semantic labels and allow pixel level manipulation while still
retaining consistency across the existing image parts we are considering using concepts from Energy-based
Generative Adversial Networks[2] (ebGAN) as building blocks. There are several useful concepts developed
in this architectural building block. Most notably though 1) the ability to compute the training example loss
in a more flexibly way including approaches such as using cross entropy loss against pixel level labels 2) the
use of an auto-encoder as an intermediate representation.

When trying to converge to the modified image two approaches were considered.

1. Conditional mask to Generative Model ) )
Where the nearest latent vector for the image would be found, the predicted mask modified, and the

forward pass of generative model run to obtain the resulting image

2. Clipped conditional mask to Generative Model
Same as above but modified to only change the portions of the image where the mask are changed.

2 Dataset
The City-Scapes[1] dataset consists of street view images of various cities in Europe captured via a dashcam
of car as well as pixel level semantic classification labelling for a subset of the data.

The fine labelled portion of the dataset consists of images are 2048x1024 with pixel level labelling. 2975
images in the training set and 500 in the validation set. Of the original labels only 21 of them are kept for this
model: road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person,
rider, car, truck, bus, train, motorcycle, bicycle, license plate, and unknown.

3 Methods

3.1 Frameworks

All the training and exploration was done in python using tensorflow primarily on a GPU with 16gb of
memory on linux box. Some work experimentation was done with multi-GPUs and support was added to the



code with the consideration of scaling to out to larger many GPU AWS instances but the most useful work
was found to be in error analysis and iteration on loss functions and architecture which could be done easier
by carefully babysitting a single linux box.

3.2 Data Loading and Augmentation

The images and labels are added to the training graph as a dataset. Originally preprocessing was done with
a python generator but it was found to be slow and switching to dataset graph components speed up epoch
training time by approximately a factor of eight.

Dataset pipeline steps:

e Shuffle
e (One time) Create and cache label PNG

e [oad image and label PNGs

e Rescale to 4x current training size

e Subsample a cropped window of current training size
e Batch

Figure 1: Training Example after Subsampling

Figure 1 shows an example of what is a single training example looks like.

4 Architecture, Model Training, and Hyper-parameter tuning

o
o e
S %01,

\“q'b
s

Z N\

o
) 128x64 128x64
Iessiyg

Prog

)
Q,&
S,
%S"’agep
Acg ey
|
|
|
= |
o
E
<
E |
Y
o
o}
o |
il
=
5]
m
o
=3 |
|
|
|
|

ixels

Output: Label Pi
Channels: Labels

Figure 2: Model Architecture

Figure 2 shows an overview of the model architecture and how it relates to the intended edit flow. The CNNs
and DeCNNs are Inception[3] CNN inspired blocks which have 1x1, 3x3, 5x5, and 7x7 (instead of max
pooling) filters as well as batch normalization and a skip connection. They all have the same architecture
which through testing seems to be complex enough to model the images. Testing the autoencoder block
has been useful in evaluating this component and in this current architecture works pretty well as shown in
Figure 3. The images on the left are encoded and decoded versions of the originals on the right. Initially,
with simpler CNNs the results were not nearly as good.



In general, it has been proven useful to leverage symmetry in the model. Many iterations were tried with
a mixture of CNNs and DNNs but this provided problematic in both training, output quality, and scaling
training to larger sizes. Although it takes a long time in general it seems to work to scale up an existing
model by adding a set of layers as shown in the figure. Training only the new layers at first, then fine tuning
across all layers, and then repeating.

Also, note as in ebGAN incorporating an autoencoder losses seems to help with training even of reusable
components even if not necessary for final output. For example, half of the pixel autoencoder is used for the
discriminator and the other half is used for the generator. Likewise, half of the latent autoencoder is used for
generator and the other half for finding the nearest latent vector.

Figure 3: Autoencoder Examples for Evaluating CNNs/DeCNNs (original on the right)

The training is done in three phases: autoencoder training, discriminator training, and generator training.
Each has their own loss and many share components but many layers are held constant or frozen while
training for a particular objective.

The loss functions for each training phase are listed below:

1

Lavtoencoder = Cgutoencoder * W * Xi:(ScaledPizeli - RebuiltPixeli)Q 1)
1 2
Lreal labelsis = * Z(OneHotLabeli — RealLabelSoftMaz;) 2)
Npizels * Niabels * Mbatch z
P k2
1 2
Zfakelabelsils = * Z(OneHotLabeli — FakeLabelSoftMax;) 3)
Npizels * Niabels * Mbatch :
P T
1
Lreallabels.cross — ———— % Z —OneHotLabel; * log RealLabelSoftMax; )
Npizels * Mbatch 7
1
Ltakelabels.cross = —— Z —OneHotLabel; * log FakeLabelSoftMax; 5)
Npizels ¥ Mpatch 7

DLiisoriminator= Cdiscriminator ¥ |
Lreallabelsi2+
LrealdabelacrossT

max —ZLfakelabelsizt 6)
Zreallabelsl2~ZLfakelabelsl2<%slack

max —Lfakeilabels cross
ZLreal.labels.cross —Lfake.labels.cross <%slack
1
Lratens = *[Z(OneHotLabeli—PredictedLabelSoftMaxi)2+Z(Latenti—PredictedLatenti)2]
Npizels * Nliabels * Mbatch 7 7
(@]
Lyenerator = Qdiscriminator * |
Ztakelabelsiz+
(8)

Lrake lavels:crossT

] + dtautoencoder * Liatent

Note that there were many iterations across different loss functions and architectures. Including using boolean
discriminators based on DNNs which did not appear to work as well for the diversity of images in this dataset.
Using the label based loss with a maximum slack seems to work best both since it makes the architecture



symmetrical and balanced and because with the slack separate terms cannot overpower each other and stay in
balance better. This seems to work better than trying to automatically adjust the scale of the loss components
or change the relative frequency of update steps. That said having the loss scale hyperparameters was very
useful when babysitting it to adjust the relative strength of terms. There are a lot of combined objectives and
while they don’t have to be perfectly balanced due to separation of training steps they do need to relatively
balanced.

Note that while most of the pixel level losses are currently L2 plus cross entropy there were also experiments
with other losses such as L1, losses in the frequency domain (via FFT), and cosine similiarity. All of these
were done to try to increase detail but seem less effective then just training longer with the simpler losses.
Frequency domain might deserve more experimentation. Other losses in some cases appeared to some benefit
but eventually some deficit. For example, cosine similarity was helpful in early training before introducing
the slack inequality terms but had to be removed since it inevitably created bright spots like lens flares later
in training.

5 Model Evaluation

While during training looking at specific loss contributions is useful they ultimately are not reliable for deter-
mining the final quality. One example is when the discriminator is far behind the generator the generator is
essentially successful in adversarial attacks against the discriminator. So, the loss looks good but the images
look like noise. This case can be detected by comparing the visual output with the discriminator of the gener-
ator output. If the detected labels look good but the image looks horrible than the generator has overpowered
the discriminator. This is just one example. Ultimately many problems can be diagnosed by examining in-
termediate outputs. For example, a grid pattern might reflect a stride problem in the architecture. Or a fine
persistent noise in generated images turned out to be due to adding the latent vectors next to the embeddings
instead of next to the labels.

In short, while the graphs are very useful ultimately looking at the outputs of submodels has been just as

important. For example, see Figure 3 for autoencoder output, Figure 4 for labeling, and Figure 5 for generator
output.

Figure 5: Generated Examples for Evaluating Generative Model (requested labels on the left)

6 Conclusion and Final Thoughts

There was not enough time to properly explore the ideas in this project. A lot was learned about the loss
functions and architecture. Most notably the use a slack term for the adversarial portion of the loss along
with symmetry in the architecture resolved many training stability issues albeit at the cost of slower training.



Also, it appears that at least for this domain using label based discriminator loss terms handles the diversity
of the image better than a boolean discriminator which labels as an additional input. Or at least it is easier to
train.

In terms of partial results, Figures 5 and 4 show some success in terms of the generative model and discrimi-
nator. It has been found that the training process can scale up the model but is very slow overall. Even though
the quality of generated images still could use some improving it does seem that it was successful in being
able to learn an embedding representation that can be shared between the submodels and so it should be pos-
sible to perform the editing if quality of all the submodels can be improved. Figure 3 shows promise that the
model has enough complexity for higher quality images. Recent training has shown that the loss continues
to decrease on the latent decoder model and while it currently does little more than correct the colors of the
generated image to the colors of the original image it is promising that with further training it might further
correct the generated image to the source image to be edited.

Further, although originally implemented to improve a problem with noise we believe that splitting the latent
vector by label allows for the interesting possibility of potentially transfering latent vectors for a given class
from one image to another. For example, introduce a car with car latent vectors from a donor image or swap
out car latent vectors.

The next step would be to restart training from a very small image size such as 8x4 and be patient to not
increase until the quality is really high on each progressive scale jump. This will take a long time but so far
all loss curves are always still going down so it may be the only way to determine what quality can ultimately
be achieved and complete the experiment.

Code

Complete source can be found at https://github.com/loganbruns/EditGAN/

References

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The
Cityscapes Dataset for Semantic Urban Scene Understanding,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. arXiv arXiv:1604.01685

[2] Junbo Zhao, Michael Mathieu, Yann LeCun, “Energy-based Generative Adversial Network” in ICLR 2017. arXiv
arXiv:1609.03126

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich, “Going Deeper with Convolutions” in CoRR abs/1409.4842, 2014. arXiv
arXiv:1409.4842



