Old Photo Restoration: Pix2Pix vs Partial

Convolutions
Nivedita Rahurkar Daria Reshetova
Cisco Inc. Department of Electrical Engineering
Stanford University Stanford University
rahurkar@stanford.edu resh@stanford.edu
Abstract

Old photo restoration is necessary since many prints of photo taken decades ago
with film camera are no longer in good condition. Moreover, doing the restoration
manually can be very tedious and requires expertise in some image processing
software like Photoshop, Affinity photo, Gimp etc. Therefore we propose a novel
deep learning based approach where the user only provides the damaged image to
the network and the network outputs the restored image. We achieve this using
two distinct networks, one that uses a cGAN and the other that uses a VGG-16
based U-Net but with convolutions replaced by partial convolutions [7]. We also
simulate the damaged input images using masks generated by randomly applying
lines, circles and ellipses of varying sizes and number at distinct parts of the image,
since the available training data for damaged image and its restored counterpart
was limited. Finally, we compare the two results produced by both the networks.

1 Introduction

Many people nowadays have archives of printed photos, taken 50 or more years ago, some of which
have white dots, stripes, creases and are even ripped apart. These pictures can be restored using
image processing software, ex. Photoshop, but that requires a considerable amount of time, effort and
special skill. We tried to build a DNN to automate the task.

More specifically, the input to our algorithm is a damaged grayscale image. We then use a neural
network to fill in the damaged parts. We compared the following 2 network types:

1. A cGAN [3]. Both the generator (U-Net) and the discriminator have access to the input
image (a damaged image in our case) and are trained in an adversarial manner.

2. A PConv: It is a U-net based architecture with modified convolutional layers. It uses mask-
aware convolutions(partial convolutions) instead of the standard convolutions to account for
the fact that the initial image has to stay unchanged outside of the mask.

The performance of the networks is measured visually as the two approaches have different loss
function types (e.g. the cGAN loss involves the generator loss, while a partial convolutions network
doesn’t have a discriminator).

2 Related work

To the best of our knowledge, the problem of restoring damaged photographs is usually solved using
software like Photoshop. We could not find any previous work on automating the task.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



Nevertheless, image-to-image translation tasks have recently been looked at from the perspective
of neural networks. Unconditioned GANs have been successfully applied to the tasks of image
inpainting [9], style transfer [5] and image superresolution [4]. The closeness of the result to the
input image (the conditioning) was primarily attained by adding the distance between the desired
input and the output of the generator (e.g. L2 regression) to the loss.

Conditional GANs deffer from the unconditioned ones in the fact that they are not application specific.
They have been applied to colorization, scene change [3] and digits generation [8].

Our problem is most similar to image inpainting, which was successfully done by a pix2pix [3]
architecture in case of rectangular holes and partial convolutions [7] for the irregular ones.

3 Dataset and Features

Our initial plan was to train both the networks on real damaged images. However we could only
find 208 damaged images having corresponding restored images available when we searched online.
Therefore we decided to train our network on simulated damaged images. We simulated the damage
by applying a grayscale mask on top of images from the Coco dataset[6]. We rescaled all the images
to have a size of 256 x 256.

Mask Generation The damage that we saw was mostly due to creases, folds or image sticking to the
photo album. This led to missing pixel values which appear as white patches in the image. Due to the
limitation of damaged images dataset we went with the assumption that most damaged pixels are
white (more than 0.9 * max intensity). We randomly generated masks containing circles, lines and
ellipses of varying sizes and number. Figure 1 shows the sample masks.

Figure 1: Simulated Mask Generation

We tested on the real damaged images. To eliminate extra improvements done by photoshop artists
and make the dataset more uniform, we created masks of damages and then fed masked photoshopped
images to the network. The masks were created by first aligning the images using structural similarity
index, feature extraction [10] and homography transform in opencv [1]. Then we used the difference
of the Fourier transforms of the 2 images to get the noise mask.

4 Methods

As previously mentioned, we used 2 types of architectures: cGAN and partial convolutions. The
reason for choosing them is that the partial convolutions most closely correspond to the task, while
conditional GANs with a patch discriminator should perform well on the small amounts of data as a
patch discriminator has relatively few training parameters.

4.1 Conditional GAN

The conditional GAN consists of a generator G and the discriminator D. The generator is trained
to produce images from the same distribution as the output images conditioned on the input images
(i.e. indistinguishable from them), while the discriminator is trained to distinguish the output of the
generator and the desired output images. The desired behaviour of the discriminator is shown on the
following diagram, while generator is trying to break that behaviour.



fake

3 J;, e

Loss We used a cGAN loss combined with L1(MAE) loss on the generator to encourage less blurring:
if x is the damaged image and y is the restored image:

L(G, D) = Ey[log(D(y))] + E)[log(1 — D(G())] + AE[[ly — G(2)]|1]
The objective is a minimax problem:
G* = argmin max L(G,D)
G

Architecture We used U-Net architecture (encoder-decoder convolutional NN with skip-connections
between corresponding encoder and decoder layers), shown at figure 4.2 The filter sizes for the
encoder were [64, 128,256, 512,512,512, 512, 512] — the middle layers have less parameters than
the actual pix2pix framework as the larger network gave an out of memory error when training. The
generator network had a total of 70,407,617 trainable parameters> For the discriminator we used a
patch framework, i.e. the decision is made for each patch of the generator output separately. We tried
128 x 128 and 64 x 64 patch sizes. The architecture of the discriminator is the same as the one of
the encoder with filter sizes doubling and image size shrinking by a factor of 2 each layer.

4.2 Partial Convolutions (Pconv)

In this approach we treat damaged image restoration as an inpainting problem. Pconv is a UNet-based
architecture where convolution layers are replaced with partial convolution layers [7]. We can see the
model architecture below.

3|3 64 64

concatenate

concatenate

384 384 256x256]  256x256  512x512

512x512 512x512

concatenate

256x256

128128 -
Mask

concatenate
512 1024 1024

Figure 2: Model Architecture

Partial Convolution layer: A regular convolution layer is substituted with partial convolution
followed by mask update step. For the convolutional filter W and corresponding bias b, X, is the



feature pixel values for the current convolution and M is the corresponding binary mask. The output
of the convolution layer is :

T(y. 1 . . )
% W (Xin QM) sz +b i 30, Mi; >0 My, = 1, if zij.Mij >0
0, otherwise 0, otherwise

My is the updated mask after the convolution. After every partial convolution, if the convolution
was able to condition its output on at least one valid input, then the mask is removed at that location.

S Training

51 c¢GAN

We used [11] as our starting point and modified it to work with different patch sizes.

We decided the values for the parameters based on the learning curve and the images acquired during
training. We chose A = 1072 as this decreased the blurring, while further increasing \ lowered the
performance of the discriminator. We used Adam’s optimizer to to optimize the loss and a batchsize
of 4, as larger batches gave an out-of-memory error.

During training of both networks, we increased the number and size of the generated damage, which
corresponds to the peaks in the learning curve. The largest peak in training the 128 x 128 patch
network corresponds to the noise that cannot be excluded, thus we decided not to increase the damage
up to this level when training the 64 x 64 patch cGAN.

The training curves are presented at figure 3. The last peak corresponds to getting from the generated
damage to damage masks obtained from the real damaged pictures as described in section 3.

generator log-loss generator MAE loss
0.4

0.3

0.2

REPRPEREE 6.6
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
discriminator loss

—— 128x128 patch

0.4 64x64 patch
0.2 L
0.0 p— - .
1200 1400
Figure 3: Losses in Pix2Pix network
5.2 PConv

To begin with, we started with the existing implementation [2] of the image inpainting problem in
keras. We initialized our Partial convolutional network with VGG16 weights. We used a learning rate
of A = 2 x 10~ For this network too we used Adam’s optimizer and batch size = 4. We trained the
network with number of epochs = 63, steps per epoch = 1000 and validation steps = 100. We used
the same loss function as described in [7]. It consists of:

L1 losses for both masked and un-masked regions, Perceptual loss, Style loss on VGG-16 features
both for predicted image and for computed image (non-hole pixel set to ground truth) and Total
variation loss for a 1-pixel dilation of the hole region. The loss function is weighted as follows:



Etotal — Lvalid + 6Achole + 0-05Lperceptual =+ lzo(ﬁstyleout + ['stylecomp) + 0-1£tv

Midway through our training we had to increase the amount of damage in simulated images as the

restoration was poor for heavily damaged images. Hence the sudden increase in the loss as seen in
the Figure 4.

Due to change in the

mask generation
Validation '-P/ \I’raining Loss

1000 900 l
800

800 700 Jl | Al*‘\‘t :

1 ' | !
600 AN
0 20 40 60 0 20 40 60

Figure 4: Validation and Training Loss in Partial Convolution as a function of epochs

6 Results

Ground Truth

Damaged Image Prediction(P-Conv) Prediction(cGAN)

Simulated

Real

Figure 5: Sample Results

We observed that the cGAN performed better around the edges. However, it modified a few non

damaged pixels, for eg. the hair in the second image in Figure 5. While the Pconv performed well on
the overall damaged regions except on the corners.



7 Conclusion

The restoration results obtained on simulated damaged images are better than the real damaged
images since both the images have different distributions. We observed that restoration fails near
corners which we believe is due to : 1) Less information is available from neighborhood patches
around corners as compared to interior patches. 2) In the training dataset we had limited images with
damage around corners in the training set. All in all, both networks performed almost equally well.

8 Future Work

In future, we plan to resolve the issue of poor results at damaged corners by generating more masks
with non-zero pixels around corners for training. We would also like to estimate the damaged regions
in an image better by training it for the same. Finally we would like to color the image.

9 Contributions

Both authors contributed equally to the project. Nivedita was responsible for obtaining the Coco
dataset and preprocessing it. She also performed random mask generation, damage generation and
training of the Pconv network. Daria was responsible for collecting the damaged images dataset,
preprocessing it and generating the damage masks. She trained of the cGAN networks. Both of us
worked together on the project report, poster, research, planning and intermediate tasks.

Our code is on Github at : https://github.com/dashar/old-photo-restoration

References

n

[1] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the OpenCV library.
O’Reilly Media, Inc.", 2008.

[2] Mathias Gruber. Partial convolutions for image inpainting using keras. https://github.com/
MathiasGruber/PConv-Keras, 2018.

[3] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. arXiv preprint, 2017.

[4

—_

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew P Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In CVPR, volume 2, page 4, 2017.

[5] Chuan Li and Michael Wand. Precomputed real-time texture synthesis with markovian generative adver-
sarial networks. In European Conference on Computer Vision, pages 702-716. Springer, 2016.

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan C., Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects in
context. arXiv:1405.0312v3 [cs.CV], 2015.

[7

—

Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. Image
inpainting for irregular holes using partial convolutions. arXiv preprint arXiv:1804.07723, 2018.

[8] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

[9

—

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders:
Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 25362544, 2016.

[10] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alternative to sift or
surf. In Computer Vision (ICCV), 2011 IEEE international conference on, pages 2564-2571. IEEE, 2011.

[11] Fallcon William. Image-to-image translation with conditional adversarial networks (pix2pix) implementa-
tion in keras. https://github.com/williamFalcon/pix2pix-keras, 2017.



