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Abstract

Channel coding is a key to improve transmission reliability in wireless communica-
tion. A channel coding scheme specifies an encoder that constructs a redundant
version of the original message to be sent through a noisy channel, and a decoder
that recovers the original message from the redundant noisy received signal. Most
existing channel coding schemes are developed based on additive white Gaussian
noise (AWGN) channel, or require precise channel state information (CSI) in imple-
mentation, which may not be the case in real world scenarios. This project mainly
investigates the potential of using deep neural networks (DNNs) to improve the
channel coding in wireless communication systems without knowing the channel a
priori. Two major cases are considered: (1) fixed length polar encoder with DNN
decoder for short messages; (2) recurrent neural network (RNN)-based encoder
and decoder for long messages or messages with flexible length. For the first
case, DNN decoder significantly outperforms conventional decoder in non-AWGN
channel. For the second case, the trained RNN network shows lower error rate than
widely used convolutional code in highly noisy channel.

1 Introduction

In a typical wireless communication system, signals are transmitted through highly noisy and dynamic
wireless channels. Achieving the highest possible data rate while maintaining satisfying transmission
reliability has always been the goal for the research in this area. Conventionally, the transmission
reliability is ensured by channel coding and modulation: the original message passes through an
encoder that maps it to a longer binary code containing parity (extra) information, and then a
modulator maps the code to a real or complex symbol sequence to be sent over the wireless channel.
The receiver receives the noisy symbol sequence and uses a demodulator and a decoder to recover
the original message. Conventionally, modulation is a rigid mapping (i.e., 0 — 1,1 — —1), and the
codes are developed separately from the modulation, with additive white Gaussian noise (AWGN)
channel or perfect channel state information (CSI) assumption.

In real world implementation, however, the underlaying channel may well not be AWGN, and
acquiring precise CSI in real time is very costly. In this case, conventional methods may not work
well. On the other hand, jointly optimizing them in a mathematical way under non-AWGN channel
or under channels with no known model would be extremely hard. These observations motivate
us to apply deep learning methods to this problem by replacing the conventional hand-designed
transmission schemes with deep neural networks (DNN5s) and evaluate how well deep learning can
do.

In the rest of this report, a transmitter refers to the combination of an encoder and a decoder,
i.e., it denotes a mapping from a binary message * = [r1,Z2,...,Z] to a real sequence ¢ =
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[c1,ca,...,cy). The code rate is defined as r = k/n. A receiver denotes a mapping from the noisy
received sequence € to a recovered message &. The system model is depicted in Fig. 1.
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Figure 1: Block diagram of a typical wireless communication system.

In this project, we mainly consider the following two scenarios: (1) use a DNN receiver for a
conventional transmitter; (2) replace both the transmitter and receiver with DNNs. For the first
scenario, the input of the DNN is &, a real sequence of length n denoting the distorted symbol
sequence, and the output is either a binary sequence of length k or a one-hot indicator of length 2%,
For the second scenario, the input of the DNN-transmitter is a k-bit binary sequence, and the output
is a real sequence of length n. The output of the DNN-transmitter is connected to the input of the
DNN-receiver through a noisy channel. The output of the DNN-receiver is a k-bit sequence.

2 Related work

People started to apply deep learning to the physical layer of communication systems very recently.
Existing works can be roughly divided into three categories: use deep learning to improve the decoder
for existing codes (1; 2; 3); use deep learning to understand channel effect better or decode from
non-AWGN channel outputs (4; 5); and use deep learning to design end-to-end communication
system (6; 7). In (1; 2), the authors used deep learning to improve the conventional belief propagation
decoding algorithm. In (3), the authors compared how well can deep learning do in decoding
structured code and random code. In (4), deep neural network was used to detect symbol sequence
transmitted through a molecular channel without explicit mathematical model. In (5) used plain DNN
to decode polar code from nonlinear channel. The authors claimed very good results by training
their DNNs under exactly the same channel condition as the test sets, which may be impractical in
real world scenario. In (6), the channel was modeled mathematically, based on which end-to-end
communication scheme was learned, and dense neural networks were used for both encoder and
decoder. The major problem is that the system is not scalable, and the number of trainable parameters
is prohibitive. The authors in (7) trained an end-to-end communication system without channel
model. They implemented dense neural networks for both transmitter and receiver, and trained them
iteratively. The key issue is still the scalability: each piece of their message is only 8 bits.

3 Dataset and Features

Synthetic data are used for the experiments. For both scenarios, we start with AWGN channels. The
main reasons behind this are: (1) AWGN channel is symmetric and memoryless. It is easy to generate
synthetic samples; (2) most theories in communication theories are developed based on AWGN
channel. There are mature ways to demodulate/decode the received signal to achieve theoretically
guaranteed performance, which can be viewed as benchmarks.

3.1 First Scenario

For the first scenario, we set k = 8 and n = 16. Polar encoder (8) and binary phase-shift key-
ing (BPSK) modulation {0 — 1,1 — —1} are used at the transmitter end. Eight training sets,
each containing 2,000,000 samples, are constructed by selecting the channel type from {AWGN,
nonlinear}, and training signal-to-noise ratio (SNR) from {4dB, 8dB, 10dB, co}. For AWGN channel,
white Gaussian noise is added independently to the output of the transmitter. The variance of the
noise is set according to the chosen SNR. For the nonlinear channel, we adopt the channel model
used in (5). Specifically, the dispersive model is

y; = 0.3482¢; 4+ 0.8704¢; _1 + 0.3482¢; _», (D)
and the nonlinear distortion is described as
lg(v)| = |v] + 0.2|v|* — 0.1]v|* + 0.5cos(m|v]). 2)



White Gaussian noise is added after the nonlinear distortion and dispersion. Each sample (z, &) in
a certain training set is generated as follows: the message x (label) is a randomly generated 8-bit
binary sequence. We take the message through the polar encoder, the modulator, and the channel to
obtain the input of the DNN-receiver €.

We evaluate 44 test sets of size 100,000 samples for this scenario. Each test set is constructed in a
similar way as the training set: we select the channel type from { AWGN, nonlinear} and test SNR
from {i/2,i = 0,1,...,21}dB for the set. Then, we randomly generate the messages «’s, and pass
them through the transmitter and channel to get corresponding ¢€’s.

3.2 Second Scenario

The training set for this scenario contains 1,000,000 samples. Each sample contains a 100-bit binary
sequence x and an AWGN channel realization vector w ~ N(0, 0?). The training SNR for each
sample is randomly picked from [1, 5] dB.

For testing, 26 test sets of size 5000 are evaluated. In each set, the message length is either 100 bits
or 200 bits, and the SNR is picked from {0, 0.5, ...,5.0} dB.

4 Methods

4.1 First Scenario

Since the message is short (8 bits), we have two choices for the output layer of the DNN receiver:
8 output units or 28 = 256 output units. For these two choices, we adopt the dense neural network
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Figure 2: Architectures for DNN polar decoder. Left: DNN-receiver with 8 output units. Right:
DNN-receiver with 2% output units.

The leaky-relu activation is used in all hidden layers for both architectures. In the left DNN, skip
connections from the input layer to the second hidden layer and the fourth hidden layer are used
to prevent gradient diminishing problem. The output layer uses sigmoid activation and binary
cross-entropy loss:
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where « is the original 8-bit binary message, and & is the output of the network. The choices of
output layer activation function and loss are due to the fact that the target output is a binary sequence,
so the learning task can be viewed as a multi-class classification, where the classes are not mutually
exclusive.

In the right DNN, we use softmax as the activation function for the output layer, and categorical
cross-entropy is used:

Lcce(c,p) = —— Zlog C( 5) 4)

where ¢ € {0,1,...,2% — 1} denotes the true message, and p is the output of the network indicating
the probability of each class. Here, the labels c’s are obtained by converting the binary sequence x
to decimal numbers. We choose categorical cross-entropy loss for this architecture because the 2"
output classes are mutually exclusive.



Note that minimizing the loss in eq. (3) is directly related to minimizing bit error rate, while
minimizing the loss in eq. (4) is directly related to minimizing block error rate.

4.2 Second Scenario

In this case, the message is long or even has flexible length, so it is impractical to take 2* output units.
It is even impractical to see all possible 2* messages in the training set. Thus, it is critical to choose
an architecture that is easily scalable w.r.t. various message length. Taking the sequential nature of
messages into account, the multi-layer RNN structure in Fig. 3 is used for this scenario.
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Figure 3: Architecture for joint DNN-transmitter and DNN-receiver learning.

The GRUs at the DNN-transmitter end have 20 hidden units, and the GRUs at the receiver end have
100 hidden units. In practical communication system, the transmit power is constrained. Thus, we
use tanh activation for the second GRU layer in DNN-transmitter, and normalize the ¢2-norm of
transmitted signal. The outputs of the second layer GRU at the receiver end are fed into a dense layer
with sigmoid activation function to get predictions.

For this case, we tried two loss functions, namely binary cross-entropy loss given in eq. (3), and mean
squared error:
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Experiments show that the model trained under mean squared error loss achieve better performance.
The results shown in the next section are all trained under mean squared error loss.

5 Results and Discussion

5.1 First Scenario

The bit error rate (BER) curve and block error rate (BLER) curve under AWGN channel are shown in
Fig. 4 and Fig. 5, respectively.
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Figure 4: BER curve of DNN- Figure 5: BLER curve of DNN- Figure 6: BER curve of DNN-
receiver trained and tested under receiver trained and tested under receiver trained and tested under
AWGN channels. AWGN channels. nonlinear channels.

As shown in the figures, different training SNR leads to models with very different performance, and
there exists an intermediate value (8dB) of training SNR that achieves the best overall performance.
(Besides the curves shown in the figures, we also trained models with training SNR=0dB, 10dB,
12dB. We removed some of the curves to make sure the figures are not too messy). This can be
explained considering the regularization effect of the noise: by adding proper amount of noise, the



model is forced to learn more robust decoding schemes, but if the noise level is too high, the noise
may occlude the underlaying structure of the code.

Comparing to the conventional receiver suggested in (8), the best DNN-receiver with 8 output units
performs comparably well to the conventional one, while the DNN-receivers with 256 output units
performs significantly better, especially when comparing the BLER. This makes sense because the
DNN-receiver with 256 output is built to minimize the BLER (It becomes more clear if we take a
close look at the curve with legend "clean (256 out)": it’s BER curve is close to the conventional one,
but the BLER is much lower). This observation indicates a difference in error distribution. However,
the gap between the two DNN structures are not yet clear.

Fig. 6 shows the BER curves of the models trained under nonlinear channel. The conventional curve
is obtained by implementing conventional channel equalization to compensate for channel distortion,
and then decode as if the channel is AWGN. The other more advanced benchmark (GPC+SC) uses
Gaussian process for classification (GPC) for equalization and successive cancellation algorithm for
decoding (9). As we can see, when the channel is non-AWGN, the conventional method fails. The
DNN-receiver performs comparably to the GPC+SC method in low SNR regime, and outperforms
it when SNR exceeds 5dB. This indicates that when the noise level is too high, it may worth some
delicate effort to compensate for the channel and suppress the noise before decoding.

5.2 Second Scenario

We compare our results for this scenario with the widely used convolutional code. Note that the
convolutional code has maximum likelihood decoding algorithm, and it is proved to have error
correcting capability as long as the errors are below certain threshold. In particular, we compare the
performance of the joint DNN transmitter and receiver with the convolutional encoder + maximum
likelihood decoder (Viterbi decoder), as well as the convolutional encoder + DNN receiver. It can be
observed from the BER curves in Fig. 7 and BLER curves in Fig. 8 that the DNN receiver itself can
achieve near optimal performance given the convolutional encoder. The joint DNN transmitter and
receiver is able to get lower error rate in the low SNR regime, meaning that our model is more robust
for highly noisy channel.
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6 Conclusion and Future Work

In this project, we investigated the possibility of using deep learning to design novel channel
coding/decoding schemes for wireless communications. Results showed that deep learning can
help improve the existing channel coding scheme in the case when channel model is unknown or
imprecise, or when no optimal decoding algorithm is developed. Also, we successfully trained a
channel coding scheme from scratch, which outperformed widely used convolutional code in highly
noisy channel. This reveals the potential of deep learning methods to further optimization of current
wireless transmission schemes.

Moving forward, there are multiple open problems unsolved in this project. For example, for the
unconstrained length code case, we observed that it is much easier to reduce the BER to a satisfying
level, but it is very hard to get competitive BLER comparing to existing schemes. It would be worthy
to try more loss functions and architectures to see how to effectively reduce BLER if time allows.
Also, given the universal approximation capability of neural network, we expected the DNNs to
perform as well as the conventional methods, which is not true in the second case. It would be
interesting to dig deeper for the reasons.



7 Contributions

This project is done by Yun Liao. The topic is suggested by Prof. Andrea Goldsmith.

8 Codes

Please refer to https://github.com/yun1140/CS230_channel_coding.

In the code, we modified a commpy library (https://github.com/veeresht/CommPy), which
contains basic communication modules. Keras is used to build neural networks.
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