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Abstract

We present a deep learning network for a novel task, unsupervised face-to-manga
image translation. We explore variants of discriminator architecture for CycleGAN
[14] and implement spectral normalization and self-attention into the CycleGAN
to stabilize the learning process. From the quantitative and qualitative results, our
models manage to generate good face-to-manga translations.

1 Introduction

Image-to-image translation aims to translate images from a source domain into a target domain. One
use case for this task is image stylization in social applications. Face-to-manga translation is a rare
task among image-to-image translations. For as we know, there is no preceding work for this specific
task. The lack of face-manga pair images makes supervised learning an unsuitable approach for
this task. Thus, we explore an unsupervised approach through CycleGAN [14]. To be specific, the
CycleGAN model will take face images as input and output the translated images in the style of
manga characters. One challenge for this project is the unstable learning in GANs. We explore the
use of spectral normalization [9] and self-attention module [13] to stabilize the training process.

This is a shared project with CS236: Deep Generative Models. For CS236, we focus more on the
generative model architecture, such as implementing the baseline convnet, the use of CycleGAN,
and self-attention. For CS230, we focus more on the architecture and training experiments, such as
hyperparameter and architecture searches, spectral normalization, applying deep learning knowledge
for training and debugging, and analyzing the impact of different components of the model.

2 Related work

A common approach for image-to-image style translation is neural style transfer, which is proposed
by Gatys et al. [1]. This work utilizes convolutional neural network to transfer style while preserving
the content image. However, this depends only on a single style image in the target domain and
might not capture the whole target domain, as this limits what the model can produce, as discussed in
Huang et al. [4]. Generative adversial Network (GAN) [2], in general, is more flexible in capturing
the collective style of the target domain, albeit the unstable performance. Zhu et al. [14] proposed
CycleGAN, which is a state-of-the-art GAN model that achieves satisfactory result on unsupervised
image-to-image translation tasks by optimizing on adversarial and cycle-consistency loss. The cycle-
consistency loss guides the model to generate images that can be reconstructed back to the original
images. This constraint helps the model to learn source-to-target mapping.
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Figure 1: Sample images from CelebA (a) and Mangal09 (b) (c)
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Figure 2: Network architecture for generator and discriminator.

However, unsupervised learning in GANs can be very unstable and unpredictable. As a response, we
explore the use of spectral normalization and Self-Attention GAN. Spectral normalization, proposed
by Miyato et al. [9], constraints the spectral norm of the weights and does not require an extra
hyperparameter to tune, making it computationally more efficient. Through this normalization, we
can prevent large weight magnitudes, prevent overfitting, and help stabilize training. Meanwhile,
Zhang et al. [13] proposed Self-attention GAN, where the self-attention module adds non-local
feature computation into the local features from convolutional layers. This enables the network to
model relationships between features that are separated in different spatial regions. CycleGAN and
these two expansions are the focus of the project.

3 Dataset

We use CelebA [7] as the source domain, which contains 202,599 face images. For the target domain,
we use Mangal09 ' [8] [10] dataset, which contains 10,619 Japanese comic pages and 26,602
character faces. They are available through the website sources for non-commercial use. The images
are cropped, centered, and resized to 64x64. Figure 1 shows examples of the preprocessed images.
We yield 2,000 images from CelebA for the final result comparison. We use open source CycleGAN
model from [14] 2. We created, modified the data and training pipelines, and extended the model.

4 Methods

Generator (G, F) We use ResNet-9 blocks as our generator, as shown in Figure 2a. This archi-
tecture, proposed by Johnson et al. [6], consists of two stride-2 convolutions, 9 residual blocks, two
stride-% convolutions, instance normalization, and Relu activations except for the last tanh activation.

Discriminator (Dy, Dx) We use two architectures for our discriminator. The first is a 4-layer
convolutional network, which will be our baseline as shown in Figure 2b. The second is PatchGAN
[5]. As shown in Figure 2c, it consists of a stack of 4x4 convolutional layers with strides 2 and 2
4x4 convolutional layers with stride 1 that use instance normalization and LeakyRelu activations.
It downsamples the image into an nxn output array, where n depends on the depth of the 4x4
convolutional layer stack, as shown in Table 2. The deeper this stack is the smaller the final output

'http://www.manga109.org/en/
*https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix



Table 1: Training settings Table 2: PatchGAN output dimensions.

Hyperparameters  Value Depth (d) Final output dimensions
o 0.0002 3 30 x 30

optimizer Adam 4 14x 14

B1 0.5 o] 6x6

decay rate 0.1 6 2x2

size is. Each entry in this output signifies whether each patches in the input image is real or fake. The
benefit of this architecture from the baseline convnet is it requires fewer number of parameters.

Loss Formulation We minimize the adversarial loss, Lg4n. Given source images x € X and
target images y € Y, the model learns the mapping function G : X — Y and the inverse mapping
F :Y — X simultaneously. For the mapping function G:

Lean(G,Dy) = Eyop,av) [108 Dy ()] + Bz Piora () [l08(1 — Dy (G()))]

, where the generator optimizes to generate fake images G(x) to fool Dy and Dy optimizes
to distinguish G(x) from real images y. Both components plays a minimax game, where
mingmazp, Laan (G, Dy) and vice versa for Lgan (F, Dx). In addition, we add a constraint
through cycle-consistency loss, L¢ycie, Where the constraint is F'(G(x)) ~ x and vice versa.

Loyete(G, F) = EyPunra() [IGF®)) = yll1] + EonPara(o) [[1F(G(2)) — 2ll1]

, where we minimizes the L1 distance between the reconstructed images and the original images. Over-
all, we minimize the full-objective function: L(G, F, Dy, Dx) = Lgan(G, Dy)+Lgan(F, Dx)+
Lcyeie(G, F). To handle the unstable learning, we implement these two following expansions.

Spectral Normalization (SN) [9] Spectral normalization fixes the spectral norm of each convolu-
tional layer by replacing the weights W with %, where o (W) is the largest singular value of W.

It is a form of regularization. We compute o (W) through power iteration, where (W) = v Wv
for W € R ™, v € R™ and v € R"™. We randomly initialized v and v. Then, at every
learning step we update u, v and calculate o(W). For learning step (¢ + 1), the updates are:
U1 = Wy, V441 = WTutH. We replace instance normalization with spectral normalization in
the discriminator.

Self-Attention Module (Attn) [13] The self-attention block consists of 1x1 convolutions and takes
in features from a convolutional layer, computes the self-attention feature maps, and append it to the
input features. Figure 2d shows the structure of the non-local block. Zhang et al. [13] proposes a
combination of self-attention GAN and spectral normalization to stabilize GAN training. We attach
this non-local block to the convolutional layers in the discriminator.

S Experiments and Results

Table 1 shows our training setup. We train for 200 epochs. We notice the loss for the generator
and discriminator fluctuates greatly. Instead of using a lower learning rate, we decay the learning
rate after half of the overall epochs. We choose to use Adam optimizer for more adaptive updates,
considering the unstable loss.

As quantitative metrics, we use Inception Score (IS) [12], which measures the KL divergence between
marginal and conditional class distribution, and Fréchet Inception distance (FID) [3], which measures
the distance between real and generated images. A higher IS indicates better image quality and a
lower FID indicates a closer distance to real data. We are not using the ImageNet-pretrained Inception
network as our evaluator. Instead, we are using a VGG network that is pretrained to classify anime
characters®. We think this is a more suitable network for evaluation given that it operates in a similar
domain as our task. For qualitative evaluation, we include images from a VGG neural style transfer
model, which is trained on 1 style image, as an additional qualitative comparison.

*https://github.com/abars/AnimeFaceClassifier



Table 3: Discriminator architecture difference

Noiarit IS FID Table 4: Image transforms
4-layer covnet 3.200 0.453 Vamiant 15 FID)
PatchGAN 4.866 0.523 Nne=3 2717 0.322
PatchGAN + SN 4.520 0.487 ne=1 3.059 0.321
PatchGAN + attn 3.960 0.478 n. =1+ Random flip 3.800 0.456

PatchGAN + SN +attn  4.074  0.523

Table 6: PatchGAN depth
Depth (d) IS FID
3.800 0.456

Table 5: « difference
Variant IS FID

Table 7: Depth + SN + attention
Depth (d) IS FID
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Architecture Search Results In Table 3, the baseline 4-layer convnet has significantly lower
inception score than the PatchGAN discriminator, with slightly lower FID score. This indicates that
the quality of the generated images is better with the PatchGAN discriminator. In Figure 3, the neural
style transfer images have the style of manga characters but also include similar patches that most
likely come from the style image. We observe that the CycleGAN models can generate more diverse
manga style images. For the baseline, the model fails to properly translate the faces. We suspect
that the generator can simply fool the discriminator with these images. In contrast, the models with
PatchGAN discriminator shows decent translations, where we can clearly see the facial features.
Given that PatchGAN uses patches of image to infer the realness of the image, we suspect that the
generator is forced to generate more facial features throughout the image space. Furthermore, the
spectral normalization adds more details, which we infer because it regularizes the discriminator,
while the self-attention makes the images more realistic, which comes from the non-local feature
computation. Combining the two components together, some of the generated images have better
quality and more facial features. They have more complicated lines and shapes in the generated
images. However, notice that there is no significant differences in the inception and FID scores
between these two expansions and the vanilla CycleGAN as shown in Table 3. We suspect that the
quantitative metric is not sensitive to small changes in the images. Thus, we use the quantitative

Figure 3: Generated image samples from the test set.
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Figure 4: Different input and training settings. RGB input (n. = 3) (a), Grayscale input (n. = 1) (b),
n. = 1 + random flip (¢), n. = 1 + random flip + ap = a (d), n, = 1 + random flip + ap = 2 (e)

metrics as a rough indicator of how the models are doing compared to the baseline. Note that the
PatchGAN in Table 3 uses a stack depth of 4.

Input and Training Experiment Results From Table 4, using grayscale (n. = 1) images and
adding more noise with random flipping can increase the model’s performance in terms of the quality
measured by the inception score. Figure 4a, b, c shows the generated images, where for RGB inputs,
the model fails to recreate faces entirely. We suspect that color channels add unnecessary complexity
to the model learning process. Note that the PatchGAN in these experiments uses a stack depth of 3.
Next, we explore the effect of different learning rate for the discriminator (a.p). From Table 5, making
the discriminator learn more frequently, by increasing the learning rate, can improve the inception
and FID scores. By increasing the learning rate, the discriminator can learn faster than the generator.
We suspect that instead of simply modifying the learning rate, we can improve the architecture of the
discriminator to improve the overall CycleGAN performance significantly. Thus, we focus more on
different improvements on the discriminator side as we can see in the other experiments we present.

PatchGAN Depth Experiments Additionally, we experiment with different stack depth for Patch-
GAN. Table 2 shows the different stack depths and output dimensions. From the baseline comparison,
using a PatchGAN of depth 4 gives a decent performance. In Table 6, without any additional compo-
nents, PatchGAN with depth 4 performs better quantitatively. On the other hand, in Table 7, with
spectral normalization and attention, the deeper PatchGAN is, the better the quantitative performance
is. However, when we look into the generated images in Figure 3, there is no significant differences
between different depths, although on some images, deeper stack gives better looking images. We
surmise that having larger patches, which what deeper PatchGAN is doing, doesn’t necessarily help
identify whether the generated image is a fake or real manga image because manga images have less
details than face images. As such, we infer that PatchGAN of depth 4 is already suitable for this task.

6 Conclusion/Future Work

To sum up, the CycleGAN with ResNet-9 blocks generator and PatchGAN discriminator learns
a decent face-to-manga translation. Compared to a neural style transfer, the model manages to
generate more diverse images. Moreover, we have seen that better discriminator architecture can
significantly improve the performance of the model. This also applies to the spectral normalization
and self-attention module. From the result, we observe that the spectral normalization adds more
details to the images, generating clearer results. Meanwhile, the self-attention module makes the
images more realistic, by highlighting more of the facial features than the other models. We infer that
these two expansions capture more details and non-local features from the source and target domain.

Although, the models look promising, it is still a hard task to accurately measure the performance of
the model with a quantitative metric. Therefore, as future work, we want to explore more suitable
quantitative metrics or evaluation procedures that can better capture the performance of the models,
especially for GANs and unsupervised image-to-image translation. Furthermore, this project has
been more focused on exploring the different architecture for the discriminator. Thus, next, we want
to explore and experiment with the generator. This can include using a deeper generator or other
additions and expansions for the generator architecture. All in all, the final results of the project meet
our expectation, such that we have a functional face-to-manga translation model.



7 Contributions

The project was carried out by Marcella Cindy Prasetio.

8 Code

The project is located in a public repository and is implemented mainly using PyTorch [11]:

https://bitbucket.org/MCindy/unsupervised-face-to-manga-translation/src/master/.
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