Primary Weight Estimation for eVTOL Aircraft via Neural Network Regression

Jordan Smart

Stanford University, Stanford, CA, 94305, USA

This work demonstrates an approach for developing a neural network capable of
replicating the explicit, semi-analytic methods for estimating the weight of various
components of an electric vertical take-off and landing (eVTOL) aircraft which available
in the SUAVE aircraft design environment. An explanation of the data-structure
associated with a SUAVE vehicle is given, along with demonstration of how a suitable
dataset of such vehicles has been generated, and how the data is to be made available

for use in the neural network regression task.

. Nomenclature

SUAVE: Stanford University Aerospace Vehicle
Environment (deprecated)

MDAO: Multi-Disciplinary Analysis and
Optimization

eVTOL: Electric Vertical Take-Off and Landing

EVW: Empty Vehicle Weight

MTOW: Maximum Take-off Weight

FCNN: Fully Connected Neural Network

HRNN: Hierarchical Recurrent Neural Network

ReLU: Rectified Linear Unit

a: Learning Rate

Bi: Adam Momentum Hyperparameter
Bo: Adam Regularization Hyperparameter
. Neural Network Prediction, Sample i
Vi Actual Evaluation, Sample i

Il. Introduction

Current aircraft design techniques are, broadly
speaking, adequate for the job. Certainly,
improvements in flow simulation and structural
analysis software will allow for future
improvement in performance on specific tasks,
but current methods and expected next-
generation approaches often suffer from
significant computational and labor overhead
costs.

Evaluating vehicle level properties such as
weight, maximum thrust, or glide ratio are
performed typically one of two ways — via an

integrated conceptual design software suite, or
via hand calculation by an individual engineer.

The former requires access to, training, and
familiarity with the specific software suite, and
the creation of a fully detailed aircraft model,
which can then be evaluated by complete
mission simulation.

The latter is time consuming in and of itself when
evaluating an individual aircraft and becomes
prohibitively so when attempting to consider a
range of possible vehicles.

In order to provide an evaluator capable of
calculating vehicle-level properties for a range of
proposals quickly and efficiently with a minimum
input of time, energy, and cost, the effort
detailed here seeks to create a neural network
capable of replicating the performance of a full-
featured aircraft design suite without the need
to create a complete aircraft model.

The architecture takes in the necessary vehicle
parameters and returns an estimate of the
empty vehicle weight (EVW) — i.e. structural
mass, mission systems and onboard energy
storage, without passengers or cargo. EVW is the
weight of the plane “as it sits”.

The typical datastructure of computational
models for aircraft treat the aircraft itself as a
tree:

L] 1
Power .
Win, Fuselage
Internal

Fig. 1:Aircraft Hierarchical Layout

Associated with each level of this hierarchy are
individual parameters, e.g. payload capacity at
the aircraft level, maximum thrust at the
propulsor level, etc. which together characterize
the aircraft. For our purposes we need only
fifteen parameters total, which form our vector
as aninput:

Para | Full Name Min. | Max.
m.

MTOW Max Take-Off Weight = 2E3 2E4
my Battery Mass 0.0 1E3
mp; Payload Mass 0.0 5E3
Lp Fuselage Length 3.0 10.0
Wk Fuselage Width 2.0 10.0
Hgp Fuselage Height 1.0 3.0
b Wingspan 0.0 20.0
c Mean Aero. Chord 0.0 5.0
t/c Thickness-to-Chord 0.01 0.30
w/f | Winglet Fraction 0.0 0.25
N; No. Lifting Rotors 2 20
Nr No. Thrusting Rotors 1 10
B; No. Lifting Blades 2 10
Br No. Thrusting Blades 2 10
Rt Propeller Tip Radius 0.0 5.0

Table 1: Input Parameters and Ranges

A significant obstacle to implementation of a
neural network approach to this problem is the
absence of a suitable dataset. As no fully
developed eVTOL has yet been flown, and the

total number of real-world designs is unlikely to
exceed 100 at any point, it becomes necessary to
generate an entirely artificial dataset with which
to train the network. As our end-goal is not
necessarily to exceed human-level performance
on these tasks but merely to develop an
appropriate regressor for the current state-of-
the-art, this is wholly appropriate.

To that end, a uniform random sample of the
parameters given in Table 1 were used to
construct full-featured aircraft models within the
SUAVE aircraft design tool, and its onboard
weight estimation tools were used to generate
EVW estimates which act as our labels for the
purpose of comparison with our neural
network’s output.

lll. Related Work

As this is a novel application of neural networks,
there is little in the way of directly comparable
pre-existing literature. Traditional weight
estimation methods and their derivation are
detailed in a number of references including
notably Raymer™™ and Kroo!®. SUAVE’s own
implementation is a derivative of that used by A3
for Project Vahana, published as part of the
results of their MDAO study for that aircraft®.

Neural networks have been applied in other
areas of aircraft design, particularly in efforts to
regress and replace particularly computationally
intensive segments of computational fluid
dynamics simulation, such as solving the discrete
Boltzmann equation®. Unfortunately, the
numerical schema, data structure, and
underlying equations are so far removed from
what is being attempted here that it renders any
insight into architecture design irrelevant.

More relevant in topic and data structure,
Kalogerakis, et al.®! sought to generate plausible
aircraft based on a low-level parameterization,
but approached the problem on a visual rather

than performance basis, and implemented their
generator using a conditional probability model
rather than a neural network.

IV. Dataset and Features

As mentioned above, the dataset was generated
using a uniform random sampling over the
design parameters between the minimum and
maximum values as listed. Engineering judgment
was used to determine appropriate
discretization intervals for each variable, with
finer discretization given to parameters against
which the model is most sensitive. In total, this
created a design space of 8.7E15 possible design
combinations.

Limitations arise, however, with regard to the
speed with which design models can be
constructed and evaluated. Because each model
must be fully constructed and evaluated within
SUAVE, it is only possible to generate
approximately 1E4 data points per day of
computation. In total 1E5 data points were
generated for use in training our neural network,
which proved to be a significant limiting factor in
its effectiveness.

V. Methods

Although the innate structure of the problem
might suggest that a convolutional neural
network (CNN) or hierarchical recurrent neural
network (HRNN) might be naturally suited to the
task, the low dimensionality of the input and
output as well as the relatively small amount of
inter-dependent computation that must be done
in traditional weight estimation methods
suggest that those architecture’s benefits would
be wasted. The reduction in overall parameter
size and ability to maintain “awareness” of
inputs is unlikely to be necessary in this instance.

For these reasons, this effort pursues the use of
a fully connected neural network (FCNN) as the
architecture for the hidden layers of our

network. This choice, however, leaves several
other key decisions open.

Principally, though this problem seems to
naturally take the form of a regression task, prior
work has shown that in some cases, neural
networks may still perform better when the
problem is posed as a classification task rather
than direct numerical regression.

Evaluating their comparative performance
requires a different choice of output layer for the
network, loss function, and performance metric.

To compare the network’s numerical output
directly with the SUAVE EVW label, we will use a
rectified linear unit (ReLU) output layer with
mean squared error loss:

m
— 1 Z(A)2
Juse = o £ Vi —Yi

As this has a directly interpretable meaning,
being the square of the gross error between the
network and our expectation, we can also use
this as our performance metric, with human-
level-performance considered to be ~1E4,
corresponding to a gross error of ~100 kg. For
the remainder of this paper, this architecture
shall be referred to as the “Regressor” network.

To treat the problem as a categorization, we will
have to first pre-process SUAVE’s EVW ouput
and discretize the output space into a number of
possible categories. Since we anticipate human
level performance to be ~100 kg, we use this as
our unit of discretization, creating 100 categories
from 0 kg to 10000 kg+. This has a mild
normalization effect on the dataset, as it groups
all outliers into a single category for the network
to recognize. We then apply a softmax output
layer, and use categorical cross-entropy loss:

m n
=2 2 ~Cgloss
]CCE - m yU OgyU

i=1j=1

+ (1 — ;) log(1 - 9;5))

Since this has no direct physical meaning, we will
use categorization accuracy as our metric,
expecting human level performance to be near-
perfect. This shall be further referenced as the
“Categorizer” network.

In both cases, an Adam optimizer was employed,
with learning rate a varied from 1E-4 to 1E-1
experimentally, and its typical beta values of 5;
at 0.9 and S, at 0.999.

The hidden sections of the network were
evaluated with 32, 64, and 128 hidden units, and
3, 6, and 9 layers.

VI. Results and Discussion

No combination of hyperparameters produced
acceptable performance. The Regressor network
produced at best 2.7E7 MSE loss on the training
set and 4.4E7 on the test set. The Categorical
network produced at best 3.6% accuracy on the
training set and 1.9% on the test set.

These results correspond to approximately
5000-6500 kg errors in weight estimation for the
Regressor network, suggesting that the network
has learned a rough order of magnitude for its
output, but struggles to be any more precise
than that.

Charitably the Categorizer network could be said
to be performing 2-3X better than base-rate
random selection, indicating again, some
learning, but of limited progress.

Typical error analysis may prove to be fruitful in
future work, however, the largest obstacle
encountered was difficulty in training the
network.

Likely owing in large part to the relatively small
dataset, the both the Regressor and Categorizer
networks would converge on their respective
best results in fairly short time. The Categorizer
network in particular would typically converge
within 3 epochs and never improve from that
point.

The Regressor network would typically converge
with 100 epochs, but displayed very unusual
convergence behavior. If, following the
initialization of it’s weights, it’s initial loss was
between the converged 2.7E7 value and ~4.4E7,
it would progressively converge down to 2.7E7,
and then either remain at that figure, or else
jump up to 4.4E7 and instead converge at that
value, as evidenced by that behavior on the test
set. If the initialized loss was above the 4.4E7
value, the optimization would move to that point
fairly rapidly, and not improve.

VII. Conclusion and Future Work

Though the results of this investigation were
disappointing, they did nevertheless provide
several important insights and suggest several
avenues for improvement.

First, it provides some validation that datasets
on the order of 1E5 are inadequate for the task
of training an end-to-end deep learning
replacement for this particular aspect of aircraft
design. Effort must be given to improving the
data generation apparatus so that larger
datasets can be made available.

This may go some way to mitigating the difficulty
in training the network, but if the recalcitrant
training behavior persists, adjustments to the
optimizer must be considered. The bifurcated
convergence of the Regressor network suggests
that a simulated annealing optimizer would be
appropriate.

More detailed evaluation metrics might provide
better insight. For the Regressor network, in
addition to mean squared loss, an absolute
comparison in predictions, or a probabilistic
breakdown of likely network predictions for a
range of labels would give insight into the
bias/variance tradeoff at play.

For the Categorizer, a full confusion matrix and
an evaluation metric that included an element of

the magnitude of the error as well as the
accuracy would be an improvement.

VIIl. References

[1] Raymer, D.P., “Aircraft Design: A Conceptual
Approach, Sixth Edition”, AIAA Education Series,
2018

[2] Kroo, 1., “Aircraft Design: Synthesis and
Analysis”, Stanford University [online reference],
URL: aerodesign.stanford.edu/aircraftdesign,
2018

[3] Bower, G. “Vahana Configuration Trade

Study — Part 1I” Vahana [online article], URL:
https://vahana.aero/vahana-configuration-
trade-study-part-ii-ledcdac8ad93, 2017

[4] Hennigh, O., “Lat-Net: Compressing Lattice
Boltzmann Flow Simulations using Deep Neural
Networks”, arXiv:1705.09036 [stat.ML]

[5] Kalogerakis, E., Chaudhuri, S., Koller, D.,
Koltun, V., “A Probabilistic Model of
Component-Based Shape Synthesis”, ACM
Transactions on Graphics, Vol. 32, No. 4, 2012

IX. Appendix

The necessary code has been stored on my
personal fork of the SUAVE repository:

https://github.com/JTrentSmart/SUAVE

On the branch, feature-nn-regressor.

SUAVE itself has significant dependencies which
may make installing the package and running the
code difficult, however the relevant script is
located at:

SUAVE\trunk\SUAVE\Surrogate\...
neural_network_surrogate_functions.py

for review. The relevant methods the neural
network is being regressed against are those for
an eVTOL stopped rotor configuration, which can
be found at:

SUAVE\trunk\SUAVE\Methods\Weights\...
Buildups\Electric_Stopped_Rotor

SUAVE\trunk\SUAVE\Methods\Weights\...
Buildups\Common

