Monitoring the Operational Performance of an Anaerobic
Wastewater Treatment Plant with Deep Learning Methods

Jose Bolorinos

jbolorin@stanford.edu

Chris Pearce

cpearce@stanford.edu

Stanford University

Abstract

This paper investigates applying deep learning
frameworks to forecast the state of an anaerobic
wastewater treatment plant. Various convolutional
and recurrent model designs are tested, and model
structures capable of making univariate and
multivariate predictions are developed. The best
performing model designs are shown to outperform
state of the art autoregressive and Bayesian
forecasting techniques.

1. Introduction:

This paper investigates the use of deep learning to
predict operational parameters at an anaerobic
membrane-based wastewater treatment facility.
Anaerobic wastewater treatment systems (WTSs) are
emerging as low-energy alternatives to conventional
methods that can harvest energy from wastewater as
methane and could make net-energy-positive
wastewater treatment possible for the first time!™*.
However, they require careful operation as anaerobic
organisms are quite pH sensitive and generation of
methane results from a delicate symbiosis of multiple
microbial communities.

Availability of low cost sensors and computing
resources means that the pH and biogas production of
anaerobic WTFs could be monitored in real time to
anticipate and prevent operational issues. Recent
advances in convolutional and recurrent deep learning
networks have led to breakthroughs in the use of
artificial intelligence for image recognition and natural
language processing’. A growing body of work is
studying the use of new deep learning methods for
forecasting® ! but their application to wastewater
treatment is a relatively novel area of investigation.
The purpose of this project is to develop a model that
can accurately predict hourly pH in an anaerobic
reactor within a time horizon of 24 hours. We also
examine the predictive performance two-channel
models (i.e. models that take input data from two co-
dependent sensors) with the wultimate goal of
developing a deep learning framework to validate
sensor readings and alert operators of the need to
recalibrate faulty sensors.

2. Data:

Data for this project are from the Bill & Cloy Codiga
Resource Recovery Center (CR2C), a pilot-scale
anaerobic, membrane-based wastewater treatment
facility on the Stanford campus. These data include
high-resolution flow-rate, pH, conductivity, pressure,
and differential pressure measurements sensors
located at all critical points in the facility’s wastewater
treatment process, including its anaerobic reactors. All
data are structured and combined through time-stamp
and “treatment stage” tags. Two pH sensors from
CR2C were selected to train and test our models: The
first sensor is in a tank that holds influent wastewater
from the Serra St. sewer; the second sensor is in one
of the facility’s anaerobic reactors. Our two-channel
models use data from temperature and conductivity
sensors that we believe may be co-dependent pH and
are located at the same points in the facility.

Although data are available at ~lm intervals, we
aggregated them to hourly data to ease computational
load. In practice, predicting pH in anaerobic reactors
is important on hourly to daily time scales, as this is
the timeframe over which parameters tend to change,
and plant managers tend to make operational
decisions. In total, 12,768 hours of the treatment
plant’s operational data were available. We used
10,000 hours to develop our models, segmented into a
training set for fitting models (8,000 observations), a
validation set for hyperparameter tuning (1,000
observations), and a test set for a final evaluation of
predictive performance (1,000 observations).

3. Methods:

3.1. Time Series Benchmarking

The performance of all models we developed was
compared to two standard time series methods. The
first method was a standard auto-regressive integrated
moving average (ARIMA) model that can be fit to a
single time series. We examined the autocorrelation
matrix in our pH sensors and concluded that the data
show autocorrelation on the order of roughly 24 hours.
We tested models with a moving average order of 1-5
hours and a differencing order of 0, 1, and 2 obtaining
the best performance on the training set with an

autocorrelation order of 24, a moving average order of
1 and a differencing order of 0.

The second time series approach we used to
benchmark our predictive performance was the
Facebook “Prophet” model proposed recently!!.
Facebook’s prophet model combines time series and
Bayesian methods to capture autocorrelation,
seasonality, changepoints and other irregularities in a
time series and make predictions. Since each model fit
pertains to the input (training) series, it cannot be used
to test more than one out of sample prediction set. We
thus randomly sampled time series of length N + 24
where N observations were used to train each prophet
model, which was then used to forecast the next 24
hours in the series. We tested training series (N) of
length 24, 48, 72, 168 (1 week), 760 (1 month) and
8760 (1 year) and found that models fit to 1 month of
data achieved the best performance.

3.2. Model Architectures

Two classes of neural networks were tested,
convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), and within these a range of
architectures were trialled. Initial model development
focused on building a univariate model, taking one
channel as an input and forecasting that same channel
as an output. Later the RNN models were adjusted to
accept a multivariate input and produce a multivariate
output in a test of the model’s ability to undertake a
joint learning task.

3.2.1 CNN Architectures
Two separate CNN architectures were tested.

1. A ID CNN design inspired by Rajgupar et al'?
who use a deep residual network CNN to detect
cardiac arrhythmias and studies like Yang et al',
who use deep 1D CNN’s for human activity
recognition with inertial sensors. We considered
1-12 layers of stacked modules consisting of
convolution, batch normalization, ReLU,

dropout, and max-pool shortcut connections. Our
search of the hyperparameter space returned
MSE:s that were more than 5 times higher than the
RNN model, so this approach was abandoned.

2. A wide network based on the Inception network
for computer vision 4, with a convolutional layer
comprising 32 p X 1, p X 3 and p X 5 where p
represented the number of 24 hour periods of data
inputted into the model. Two smoothing layers
were added to the model of size 32 X 3 X 1 and
16 X 3 X 1 to ensure that the model outputs were
locally consistent. This model was able to achieve
an MSE about 40% higher than the FB Prophet
model, so while promising, it was set aside in
favour of better performing RNN models.

3.2.2 RNN Architectures

Initial trials with RNN architectures proved to be more
successful than the CNN architectures, and as a result
a wider variety of RNN models were investigated.

Architectures trialled included

1. RNN encoder with outputs feeding into an affine
prediction layer

2. Bi-directional RNN encoder with outputs fed into
an affine prediction layer

3. An RNN encoder-decoder pair; the RNN encoder
builds a hidden state which is passed as an
initialiser to an RNN decoder, and decoder
outputs are then fed into an affine layer.

4. An RNN encoder-decoder pair, with time aligned
encoder outputs fed as inputs to the respective
decoder steps

5. An RNN encoder-decoder pair with an attention
mechanism allowing the decoder to attend to the
encoder’s hidden states

6. An RNN encoder-decoder pair with time aligned
encoder outputs and teacher forcing!’, where the
output of each decoder step is fed as an input into
the next decoder step (see Figure 1).

Architectures (1) and (2) were based on classifier
model designs, while (3) and (5) were based on neural

Figure 1: Schematic of RNN Architecture 6 - Selected for Detailed Training

Key
1. Feed input timeseries data

laru| [eru| |aru| [eRU| [aRu| [GRU]

into encoder

laru| |GRU

2. Take encoder hidden state
and feed into decoder as

aru f\{Grul\ ... ~{aRU
A

N GRU ‘ initial state

]GRU}{GRUkﬁ;{GRu}{GRUki>kf
@ P

X114 | X1,2 X128 | X1,24

X2,1 X2,2 e X2,23 | X2,24

Xp,1 Xp,2 Xp,23 | Xp,24

\J 3. Feedinput timeseries data
into decoder
4. Feed encoder output into
decoder
5. “Teacher Forcing” - feed
output of previous decoder
step into next decoder step

machine translation model designs'®, as was the
teacher forcing component of model (6). In each case,
the models were adapted for use with continuous data
instead of categorical datasets. The encoder output
feeding approach used in (4) and (6) was an adaptation
proposed by the authors, supported by the fact of a
strong 24 hour periodic trend in the dataset.

The model classes were subsequently adapted to
accept both single and multi-channel inputs, and
models (3) — (6) were adapted to incorporate multi-
layer RNN models. In early testing, GRU, LSTM and
basic RNN memory units were trialled. GRU and
LSTM models performed similarly, and both were
significantly better than the basic RNN. The GRU
memory unit trained significantly faster than the
LSTM however, so it was used in all model classes.

3.2.3 RNN Data Inputs

Two different formats were trialled to feed data into
the model. Flat form data was structured as x;e{p X
12,1} and allowed for arbitrary length inputs to be run
through the model. Deep form data was structured as
x;€{24,p}, where the input data was a vector 24
observations wide and p periods deep. This reflected
the fact that there was clear 24 hour periodicity in the
data, but forced a decision to be made at training time
as to the value of p. For multichannel inputs the data
was structured as x;e{p X 12,1,n} and x;€{24,p, n}
respectively, where n is the number of channels. Deep
form data structures performed better in preliminary
model development, and so were adopted for the final
model design.

3.3. Loss Function and Model Evaluation

The model uses an MSE loss function combined with
L2 regularisation. All models were evaluated on the
basis of MSE.

3.4. Selected Architecture Development

During the model design work, architecture (6) was
found to be able to consistently outperform the
benchmarks based on CPU training. Figure 1 provides
an illustration of this model. This was selected for
detailed testing of hyperparameter settings. Following
this testing the preferred hyperparameter settings were
transferred to other models in the RNN category for
final testing and evaluation.

3.5. Hyperparameter Search

A detailed search of hyperparameter settings was

performed on architecture (6). Our hyperparameter

search space consisted of the following 5 dimensions,

each tested for both single-channel models (i.e. time

series inputs from just one sensor) and two-channel

(i.e. time series inputs from 2 sensors):

1. The number of stacked encoder and decoder
layers shown in Figure 1 (1-3 layers were tested)

Regularization parameter

1-channel model 2-channel model

log of MSE

RNN Layers
gl B
R 3 T .
8 8
g 34 EmE 3]
5 =
5 g
w 2_ :” 4
g g
la] a
* 32 64 * 2 64
GRU Neurons # GRU Neurons
1e+031 g 1e*03
]
§
1e+011 log of MSE g 1e+011
25 c 5
[¢]
0.0 2 4
1e-01+ 25 N 1e-014 3
©
S
o
Q
1e-03 © 1e-031

1e:04 1e:03 102 1e-01
Learning Rate

Learning Rate
Figure 2: Hyperparameter search for models with 1
sensor (LEFT) and 2 sensors (RIGHT)

2. The number of neurons in the GRU’s comprising
the encoder and decoder layers (16, 32, 64, and
128 neurons were tested)

3. The number of days of previous hourly pH
readings (i.e. the dimensionality of the 24-h time
series input into the model; 1,2,3, and 4 days were
tested)

4. The size of the L2 regularization parameter
applied to the model’s mean squared error loss
function (values between 1E-7 and 1E+3 were
tested)

5. The model’s learning rate (values between 1E-4
and 1E-1 were tested).

All models were run on GPU cores on Stanford’s
Sherlock supercomputing cluster, using Keras
“CuDNNGRU” GRU class to optimize computational
performance. Each model’s error was computed on
our dev set of 1,000 samples. Figure 2 displays the
results of our hyperparameter search. Our initial
search found that the 2- and 3-layer RNN’s showed
considerably worse performance than 1-layer RNNs,
so we restricted further search accordingly. Within the
subset of 1-layer RNNs, we found best performance
with 64-neuron GRUs taking a 2-day input signal,
although 3-day input signals were better for the 2-
channel models. Within the subset of these model
architectures, the best values for the learning rate and
regularization parameter were 1E-2 and 1E-3,
respectively, although visual inspection of Figure 2

1604 103 102 1e01

o =
o0 o

Test set RMSE
o
D

0.3

suggests that we could explore this parameter space
more thoroughly.

4. Results:

4.1. Predictive Performance:

Figure 3 plots the root mean squared error (RMSE) of
the best 1-channel RNN computed on the test set, for
each forecast horizon (1-24 hours). As shown in the
figure, our RNN achieves a predictive performance
that is on-par with the Facebook prophet model (and
somewhat more stable), and far better than the
ARIMA model. Also notable is the fact that pH is
much easier to predict in the reactor (AT305) since it
is mediated by the anaerobic microorganisms. Influent
pH (AT203) is highly variable and dependent on
exogenous shocks to Stanford’s Escondido Village
sewershed that no time series model can capture
effectively.

AT305

AT203 |
- | 0.251

[0.201
10.151

0.104

0.05+
5 10 15 20 25 0 5 10 15 20 25
Forecast horizon (hours)
Model Type
- ARIMA
--fb
—RNN

Figure 3: Predictive performance of I-channel
models on the test set. Note: AT203 refers to pH of
influent wastewater, AT305 refers to pH in reactor.

4.2. Co-dependent sensors.

Figure 4 shows the predictive performance of the
model fit to input series from 2 different sensors
(performance is measured relative to the same two pH
sensors shown in Figure 3). The figure confirms the
notion that multivariate forecasts tend to be less
accurate than univariate forecasts. Indeed, when we
trained a model on the reactor’s pH sensor (AT305)
alongside the reactor’s influent flow, predictive
performance declined considerably as inflow into the
reactor is operationally determined and only adds
noise to the model. Nonetheless, the results from the
2-channel model can still be used to assess which of
the other types of sensors (temperature, conductivity,
or nearby pH sensors) might provide more information
about a pH sensor whose measurements we want to
validate. For the wastewater influent (measured by
AT203) conductivity seems to be most closely related
to pH (related to exogenous changes in the quality of

incoming wastewater), whereas in the reactor,
temperature and the pH of the influent (which flows
into the reactor) are better co-predictors.

AT203 AT305
0.25 =
o //'&
0.55 N A
w 020 \\\W/.//
Z0.50
@ 0.151__ et
§0.45 B r== = e
0.10 /___’____’_’_/
0.40

0 5 10 15 20 25 0 5 10 15
Forecast horizon (hours)

Other Sensor Type
» Biogas Flow
« Conductivity
= Temperature
+ Upstream pH (AT203)

Figure 4: Predictive performance of 2-channel
models on the test set of the sensors shown. Note:
AT203 refers to pH of influent wastewater, AT305
refers to pH in reactor. The solid lines correspond
to the results of the 1-channel models displayed in
Figure 3

4.3. Final Test Accuracy:

Having established the general range of preferred
parameters, the final stage of development involved
rerunning the full range of RNN architectures within
the preferred hyperparameter range.

Table 1: Performance statistics for all RNN models
following hyperparameter tuning

Model Train MSE | Test MSE
(1) RNN — Affine 0.0172 0.0115
(2) Bi-RNN — Affine | 0.0033 0.0030
(3) Seq — Seq 0.0144 0.0094
(4) Seq — Seq w. | 0.0678 0.0621
Encoder Feeding

(5) Seq — Seq w. |0.0448 0.0290
Attention

(6a) Seq — Seq w. 0.0999
Teacher Forcing

(6a) Seq — Seq w. 0.2209
Teacher Forcing -

Multichannel

A range of the other architectures were found to
perform significantly better following tuning, with the
bidirectional RNN encoder with affine decoder
performing an entire order of magnitude better than

the training benchmark. Some of the more
complicated architectures did not perform as well,
prompting us to investigate some of the causes.

For the attention-based model, we extracted the
attention weights at various points through training to
see what it was doing. Early on in training, the model
did use the attention mechanism to access data from
other time periods, but later the model was found to
have started assigning equal weights across all time
periods, effectively switching the attention mechanism
off. We speculate that this is because the deep structure
of the data input already provides the most important
historic information to the model, and that the RNN
structure further allows for data to be passed across
time periods. Therefore the model may have found the
attention mechanism to be redundant, with
regularisation then resulting in the parameters being
minimised.

Similarly, many of the additional components added
to the more complex architectures trialled (i.e. models
(4) to (6)) effectively provided the model with
additional ways to access various aspects of the
historic data from the model. For this application
however, it appears that a well-tuned bi-directional
RNN architecture is ultimately able to pass
information forwards and backwards sufficiently to be
able to deliver state of the art performance for this
forecasting exercise.

5. Conclusions:

We have shown that a RNNs can be used to predict the
pH inside a reactor more accurately than state-of-the-
art time series forecasting methods. Our model can
predict pH in a reactor 24-hours ahead with a RMSE
of +/- 0.11, sufficiently accurate to anticipate
endogenous pH shifts a day in advance and take it
offline to prevent damage to its microorganisms.

Given the high performance achieved with some of the
simpler architectures, there may be an opportunity to
revert and build a multi-channel RNN model using one
of these architectures. These modelling approaches
may be further adapted to address additional
prediction challenges that the plant faces. One
application could be to use deep learning to predict
“drift” in pH sensors that are in need of re-calibration.

Our next step in this work is to use these 1- and 2-
channel models to train a network to recognize such
sensor “drift” with validated laboratory pH
measurements. We hope to demonstrate the efficient
deep learning models can use increasingly available
sensor data to make substantial improvements to
wastewater treatment process efficiency.

6. Contributions:

Both authors contributed equally to this research
paper. Bolorinos and Pearce collaborated to determine
the project direction, prepare the final presentation and
draft the project documents.

Jose Bolorinos: Collected, cleaned and prepped the
sensor data for the project, developed the ResNet CNN
approach tested early in the project, performed the
benchmarking analyses using the facebook prophet
and the ARIMA time series models, and performed the
hyperparameter search on the final RNN model
architecture.

Chris Pearce: Developed the inception covnet and the
RNN architectures, developed the multichannel model
structures, conducted final model training on the
preferred hyperparameter sets and prepared the code
repository.

7. Code:

The code for this project is available on the project
Github repository;

github.com/rktby/cs230

Notebooks for running each of the models are
available in the Production Notebooks folder;

github.com/rktby/cs230/tree/master/prodn_notebooks

References

1.

10.

11.

12.

13.

McCarty, P. L., Bae, J. & Kim, J. Domestic
wastewater treatment as a net energy

producer - can this be achieved? Environ. Sci. 14.

Technol. 45, 71006 (2011).

Smith, A. L. e al. Navigating wastewater 15.

energy recovery strategies: A life cycle
comparison of anaerobic membrane
bioreactor and conventional treatment

systems with anaerobic digestion. Environ. 16.

Sci. Technol. 48, 5972-5981 (2014).

Shin, C. & Bae, J. Current status of the pilot-
scale anaerobic membrane bioreactor
treatments of domestic wastewaters: A
critical review. Bioresour. Technol. 0—1
(2017). doi:10.1016/;.biortech.2017.09.002
McCarty, P. L., Bae, J. & Kim, J. Domestic
wastewater treatment as a net energy
producer-can this be achieved? Environ. Sci.
Technol. 45, 71007106 (2011).

Lecun, Y., Bengio, Y. & Hinton, G. Deep
learning. Nature 521, 436444 (2015).
Gensler, A., Henze, J., Sick, B. & Raabe, N.
Deep Learning for solar power forecasting -
An approach using AutoEncoder and LSTM
Neural Networks. 2016 IEEE Int. Conf. Syst.
Man, Cybern. SMC 2016 - Conf. Proc. 2858—
2865 (2017).
doi:10.1109/SMC.2016.7844673

Kong, W., Dong, Z. Y., Hill, D. J., Luo, F. &
Xu, Y. Short-Term Residential Load
Forecasting based on Resident Behaviour
Learning. [EEE Trans. Power Syst. 33, 1-1
(2017).

Hsu, D. MULTI-PERIOD TIME SERIES
MODELING WITH SPARSITY VIA
BAYESIAN VARIATIONAL INFERENCE.
arXiv:1707.00666v3 (2018).

Fischer, T. & Krauss, C. Deep learning with
long short-term memory networks for
financial market predictions. Eur. J. Oper.
Res. 270, 654-669 (2018).

Borovykh, A. & Bohte, S. Conditional time
series forecasting with convolutional neural
networks arXiv: 1703 . 04691v5 [stat . ML]|
17 Sep 2018. 1-22 (2018).

Taylor, S. J. et al. Forecasting at scale.
10.7287/peerj.preprints.3190v2 1-25
doi:10.7287/peerj.preprints.3190v2
Rajpurkar, P., Hannun, A. Y., Haghpanahi,
M., Bourn, C. & Ng, A. Y. Cardiologist-
Level Arrhythmia Detection with
Convolutional Neural Networks.
http://arxiv.org/abs/1707.01836 (2017).
doi:1707.01836

Yang, J. B., Nguyen, M. N., San, P. P., Li, X.
L. & Krishnaswamy, S. Deep convolutional
neural networks on multichannel time series

for human activity recognition. LJCAI Int. Jt.
Conf. Artif. Intell. 2015-Janua, 3995-4001
(2015).

Szegedy, C. et al. Going Deeper with
Convolutions. arXiv.org 1409, (2014).
Williams, R. J. & Zipser, D. A learning
algorithm for continually running fully
recurrent neural networks. Neural Comput. 1,
270-280 (1989).

Vaswani, A. et al. Attention Is All You Need.
http://arxiv.org/abs/1706.03762 (2017).
doi:10.1017/S0952523813000308

