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Abstract— Multi-Focus Image fusion (MFIF) is an important technique to reconstruct a fully focused image (FFI) from two
or more partly focused images of the same scene. In semiconductor industry, as chip design gets more complicated, capturing
FFI gets harder due to topological differences on a wafer (varying heights of the structures). Traditional Computer Vision
techniques take multiple source images from the same location at different focal offsets to generate a useful FFI for inspection
tools and is time consuming. We propose a deep supervised model for the generation of FFI to solve semiconductor inspection
image defocus issue in less time in order to increase productivity throughput of these tools. After about 50 epochs, our network
converged to a decent final focused image which can be used for semiconductor wafer inspection. Our test set gave us 98%

good results.

L. INTRODUCTION

In Semiconductor inspection tools, it is difficult
for inspection/review cameras to take images from
top with all 3D structures on a wafer in focus since
the structures are at different focal plane. For a given
focal setting, only the structures within the depth-of-
field (DOF), appear to be sharp in the image whereas
the other structures remain defocused. In recent
years, many image fusion techniques have been
proposed which are classified into 2 categories:
transform domain and spatial domain [6]. These
techniques require a lot of input images. In this
paper, we address this problem with a deep learning
approach by learning a mapping between multiple
blurry images of a wafer site to a fully focused
image.

To the best of our knowledge, this is the first
time, Deep Learning (DL) is used for image fusion
in semiconductor domain. The novelty is using DL
for image fusion using a convolution neural network
(CNN) for a totally new application. In recent years,
CNNs have been used for visible-infrared image
fusion, medical image fusion and multi-exposure
image fusion for but not in semiconductor space. For
any semiconductor inspection tool, throughput is a
major concern and thus our proposed network solves
this problem with minimum input images for a real-
time solution with less runtime computation
complexity. During training, our network expects
multiple (1 to n) input images of any size and outputs
a fully focused image of size 256x256 whereas
during inference, the network expects multiple
square images of any size and outputs a fully
focused image of the same size as the input.

This paper describes other image fusion Related-
Work in Section2. Section 3 talks about the Dataset

including training, dev and test set. The
Model/Network is described in Section 4, the
Results/Experiments in Section 55
Conclusion/Future-Work in Section 6 and

Contributions in Section 7.

II. RELATED WORK

Advantages of a simple pixel-based image fusion
(which averages the pixel values) are simple and
fast, but it tends to blur the image losing some of its
information. Several state-of-the-art pixel-based
image fusion algorithms have been proposed, such
as guided filtering [7] and dense SIFT [8] to
overcome the above mentioned pitfalls. Guided
filtering and dense SIFT first generate the fusion
map by detecting the focused pixels from each
source image; then, based on the modified decision
map, the final fused image is obtained by selecting
the pixels in the focus areas.

Of late, there has been some work related to
image fusion using Deep Learning. Liu et al. [1]
proposed a deep network and used popular image
databases for their training data and added Gaussian
blur to simulate multi-focus images. They classified
their images into focused and unfocused pixels and
generated an initial focus map. They performed
some post processing in order to get the final fully
focused image. A lot of compute power is needed
for this network and it can only work for bi-modal
blurred images. Tang et.al [2] worked on multi-
focus image fusion. The authors also generated
defocused images by automatically adding blur to



the original images. The output of the model are
three probabilities: defocused, focused or unknown
for each pixel. This network also needed post
processing and is compute intensive. Our model can
take more than 2 input images without being
compute intensive and yet be fast and simple.

1. DATASET AND FEATURES

The data set was collected using multiple customer

wafers at multiple focal offsets and at various high

topology feature sites, using KLA-Tencor’s
proprietary high resolution semiconductor wafer
inspection system.

* Collected 20 images at different focal offsets at
100 different sites from the wafer, for a total of
2000 images.

* This paper uses the 90/5/5 approach for
train/dev/test set respectively.

*  From the 100 different sites, 90 sites (1800
images) were used for training, 5 sites (100
images) as dev set, and 5 sites (100 images) for
test/validation.

* Eachimage is a colored image of size 640 x 480
pixels but gets converted to 256 x 256.

* The maximum topology difference at a given
site was about 20 microns.

Fully Focused images (Ground truth) were

generated using KLA-Tencor’s proprietary

Software for each high topology site. For our

project, the input images fed to the network are raw

color images taken from different sites on a

semiconductor wafer. No pre-processing was

required on the input images as it can compromise
the final image quality. Image quality is of utmost
importance for semiconductor inspection systems.

Examples of input images are shown below (Fig. 1.)

Figure. 1. Examples of Input data set.

IV. METHODS

CNNs have several convolution/pooling layers
followed by fully connected layers. The first part is
viewed as feature extractors while the later as
classifiers. Since Image fusion is a combination of
the two: high frequency detail extraction and clarity
information classification to classify different
source images, CNNs can be feasible for Image
fusion. Usually in CNN based image fusion
methods, only the last layer results are used as image
features and loses most of the important information
from the middle layers. This paper uses a feature
extraction and image reconstruction architecture
together with image fusion. The schematic diagram
of our architecture is shown in Fig. 2. The feature
extraction consists of convolution layers and dense
blocks in which the output of each layer is used as
the input of next layer. The image reconstruction
includes four CNN layers. For our simplicity, the
source images are two blurred images instead of
multiple images even though this architecture can be
extended for multi-defocused images as well.

A. Model

As shown in Table 1. the feature extractor
consists of two parts (C1 and DenseBlock) used to
extract deep features. Cl1 has 3 x 3 filters and
DenseBlock (shown in Fig. 3) contains 3
convolution layers which also contains 3 x 3 filters.
Number of channels in each convolution layer is 16.
The filter size is 3x3 with stride of 1. The output of
feature extractor is an input to the fusion layer. The
output of the fusion layer is the input to the
reconstruction layer. The image reconstruction layer
has 4 convolution layers (3x3 filters). Dense block
architecture has many advantages: 1) it preserves as
much information as possible; 2) it can improve
gradients and information flow; 3) it reduces
overfitting. MFIF is a multi-class classification
problem. I; (i= I, 2,..n) is denoted as Input images
captured at different focal offsets.

Feature Extractor Image reconstruction
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Figure. 2. Block Diagram of Network Architecture
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Figure. 3. Dense Block Architecture
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Table 1. Architecture of the network

During the training process, our ground truth is
the fused image (I;) using traditional algorithms
propriety of KLA-Tencor Corporation. Our main
goal is to minimize the number of input images to
reconstruct the fully focused image during
inference. Thus, our loss function L is as follows:

L =||I;—I|]2 (1)
Where Ir= Final fused Image (from the network)

And I+ = Ground truth Image (from KLA-Tencor’s
fusion algorithm)

Figure. 4. Overview of the Network

B. Feature Fusion

Different fusion techniques can be used such as
simple addition (Fig. 5.) or L1 Norm (Fig. 6.) etc.
The output of the previous step is image D which is
fused with the input images using weighted average
rule to create the final fused map. Fused feature
f™(x,y) can be calculated as follows:

ffy)=¢7+¢7 (2)
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Figure. 5. Feature Fusion Strategy (addition)
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Figure. 6. Feature Fusion Strategy (L1 Norm)

Our model 1s designed to mput ‘n’ number of
multimodal defocused images and outputs the fully
focused image by fusing focused features extracted
from individual images. This helps in fusing images
with wider range of focus offsets at a given site on a
semiconductor wafer. In order to speed up transfer
learning, the fusion layer is modularized such that at
any given point of time in the future, a new feature
fusion methodology can easily be integrated with
our network to get a better result.

V. EXPERIMENTS/RESULTS/DISCUSSION

A. Experiments & Network Standardization

The following experiments were performed on our
network in order to standardize it.

e We started with a publically available
network and tested it with 2 semiconductor
wafer input 1mages and the results didn’t
look good.

e Experiment-1: We then added a fusion layer
with a simple addition fusion and trained the
network with hyper-parameters shown in
Table II (Experiment 1) and the final image
had artifacts.



e Experiment-2: We then trained using
increased epoch size, batch size and learning
rate (Experiment 2) but the resulting image
wasn’t crisp.

e Experiment-3: We then reduced the number
of epochs, learning rate and changed the
fusion layer from simple addition to L1
Norm (Experiment 3). Pixel loss reduced
and the images looked good.

e Experiment-4: We then increased the
number of epochs, learning rate and epsilon
but the final image didn’t show much
improvement (Experiment 4).

e Finally, we settled with hyper-parameters
shown in Experiment 3 as our network

(shown in Table III).
a Experiments
‘m., mete! 1 2 3 | 4
1 Epocs 10 100 50 75
2 Batch Size 2 8

4
1.00E-04 |
1.00E-05

4
3 Learning Rate 1.00E-04 2.00E-04
4 Epsilon 1.00E-08 1.00E-05 4.00E-08
5 Fusion Layer Type Addition Addition L1 Norm

6 Avg. Pixel Loss (Dev Set) 95 | 85 40 | 45

1.00E-03

L1 Norm

IEEL L EVESLIRER] Image artifacts
LB (v S removed but not crisp

Not much improvement

Comments since experiment#3.

Table II. Experiments on the network

n Epoch 50
| 2 | Batch Size 20
n Learning Rate 1.00E-04
| 4| Epsilon 1.00E-05

Table III. Final Hyper-parameters of the network

After about 50 epochs, our network converged to a
decent average pixel loss of ~25 gray levels
(training set) and ~40 gray levels (dev set). Even
after training further, the convergence didn’t
improve. Performance on our dev set data seems to
be diverging after about 65 epochs (See Fig. 7). We
standardized our network at 50 epochs. Our test set
was evaluated on the standardized network with
roughly 50 sites out of which about 2 sites did not
perform well. One example of a good and bad final
fused image is shown in Fig. 8.
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Figure. 7. Performance of Train/Dev set

Inference: Performance on Test Set
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Figure. 8. Performance of Test set

B. Fusion results analysis

We analyzed the performance of the network by
computing the R, G, B channel image difference as
shown below (Fig. 10.). The gray level difference
between the Ground Truth image and output image
is about 25 gray levels which is what we see on an
average in Fig. 7. as well.

Grond Truth Image

Output Image
Figure. 9. Ground Truth and Output Image

Figure. 10. R/G/B Difference Image (GroundTruth — Output)



C. Patch-Based Image fusion

Our test data on some data sets showed a high gray
level value (about ~85 gray levels). This led us to
explore different methodologies to apply different
image fusion techniques one of which was the patch
based image fusion.

The input image is decomposed into multiple
patches (configurable patch size 4X4, 16X6, 32X32
etc.) and fed the batch sets to the network to
construct the focused patch for each location. These
patches are stitched together to construct final
focused image as shown in the Fig. 11. below.

‘ 2]

Figure 11: Patch based image fusion

The patch-based image fusion technique worked
well with individual patch level (visually the
features inside the Patch look good), but the overall
image look noisy as the transition across the patch
boundaries were not smooth (see Fig. 12). To getrid
of patch transition artifacts, we need to implement
overlapped patch transition which is part of the
future work and beyond the scope of this paper.

Figure 12: Patch based image fusion Noisy path boundary

One observation we made is the fusion performance
improved as the patch size decreased but the
network took longer to generate the final output.
Results on different patch size are shown in Fig. 13.
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Figure 13: Fusion performance with different patch size

VI. CONCLUSION/FUTURE WORK

We were able to extend an existing architecture
to use multiple input images taken at different focal
length to generate a fully focused image.
Performance of our network on a site with high
density features, degrades slightly.

Currently our feature fusion strategy is a simple
addition and L1 Norm. Future work includes a
better feature fusion methodology to improve the
performance on different semiconductor wafer
images including patch based image fusion using
overlapped patch transition.

VII. CONTRIBUTIONS

Srinivasa Rao worked on the different Image fusion
techniques. He also worked on converting the
network to patch based architecture.

Antariksh De worked on changing the network to
take multiple images instead of two. The
experiments for various hyper-parameters were
performed by Antariksh.

We take this opportunity to thank Ankur Gupta who
works for KLA-Tencor. He was instrumental in
helping us collect the input and ground truth data.
His expertise in image fusion immensely helped us
through our project.
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together worked on the research papers and
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project.
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