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Abstract

We aimed to separate the instruments in multi-instrument audio tracks, a process
commonly known as audio source separation. Mixed musical sources are difficult
to analyze, transcribe and sample. Background noise, distortion and the tendency
for harmonics to mix together complicate the task for even professional musicians.
Improvements made in this domain can be applied more generally to dozens of
important problems from dialogue transcription to seismic monitoring!®!. We
developed a novel convolutional architecture that embeds musical information into
a "timbral" dimension—thereby leveraging information about the different sound
qualities present in the mixture audio to separate individual instruments. One
key challenge in data-driven musical source separation is the scarcity of publicly
available mixture audio with separated instrument audio tracks. We demonstrate
that this challenge can be overcome with data augmentation. With less than 5
minutes of training data, we were able to generate effectively infinite synthetic
training data by permuting one second frames of different instruments. Our model
extracted instruments from test audio with a source to distortion ratio of 8.16dB
and excellent subjective audio quality (as evaluated by both authors, each with over
10 years of musical experience).

Our code is hosted at https://github.com/natoparkway/AudioSourceSeparation.

1 Introduction and Related Work

Deep learning has only recently been applied to source separation. Previous techniques relied on
assumptions such as the tendency of vocal parts to be harmonic and have a fundamental frequency®!.
By tracking the pitch of the vocal track, algorithms could estimate the harmonics and reconstruct the
entire separated audio. Matrix factorization methods such as Non-Negative Matrix Factorization and
Independent Component Analysis have both been applied to the audio source separation problem,
as well as the related problem of music transcription!®!, with limited success on audio tracks with
multiple instruments.

Other source extraction methods rely on common recording techniques, such as the fact that vo-
cals frequently have approximately the same energy in the left and right channels of stereophonic
(commonly referred to as “stereo”) recordings while instruments are mostly mixed on one channel™®.
We focused on the monoaural audio source separation problem because it is the most challenging
manifestation of the audio source separation problem.

Huang et al. presented an early application of deep learning to source separation in 2014. They
utilized recurrent neural networks to achieve a source to distortion ratio of around 7dB when extracting
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a single voice from noisy audio. Jannson et al. utilized a series of convolutional and deconvolutional
layers on the same task. Both converted audio to the time-frequency dimension, a process we detail
in section 3.1, before inputting them to their networks.

A key challenge in data-driven source-separation methods is the scarcity of large datasets of recorded
audio and its component instruments. One of the largest datasets, MUSDB150, consists of only 150
songs!?!. Uhlich et al. tackled the problem of scarce data by generating training data through random
combinations of solo instrument performances. We utilize a similar data generation method in our
work to great effect.

2 Dataset and Features

We performed most of our experiments on the Bach10 dataset prepared by Duan et al. The dataset
consists of 10 J.S Bach chorales performed by four different instruments - a saxophone, bassoon,
clarinet and violin. Each chorale is roughly 30 seconds and the dataset has a cumulative length of 5
minutes and 34 seconds. Each instrument was recorded in isolation while the musician listened to
the recordings of others through a headphone. The recordings are monoaural (commonly referred to
as “mono”) and have a sampling rate of 44100 kHz. Our main focus for this project was to develop
an architecture and cost function for source-separation. This small dataset was well-suited for fast
iteration through different ideas.

We found that 5 minutes of audio was insufficient to perform well on the task. By splitting data into
frames and permuting all possible combinations of instruments, we were able to increase our effective
training size by many orders of magnitude. This significantly improved performance and solves the
problem of scarce data that hinders many data-driven models®!. Notably, we found our model can
perform well on harmonically consistent input even after being trained on cacophonous data.

3 Methods

3.1 Short-Time Fourier Transform

We used the discrete Short-Time Fourier Transform (STFT) to convert audio files into spectrograms,
thus representing musical information in the time-frequency domain. The STFT of a signal, S €
CT*F s a matrix with complex entries. Here, 7" is the number of time-windows in the STFT and
F, the number of frequencies in the spectrogram, is a parameter that can be specified. S can be
decomposed into real-valued magnitude and phase spectrograms as S = S x ’®, where * represents
element-wise multiplication and the exponential is performed element-wise. STFTs can be inverted
with the Inverse STFT transform (ISTFT). The complex phase of the STFT entries is crucial for the
inverse transformation, but are not essential for audio source separation. Spectrogram representations
of audio are useful for source separation because individual sources are easier to distinguish in the
time-frequency domain than in the original waveform.

3.2 Network Input and Output

The input to our network is the magnitude spectrogram S for a given audio sample. The phase
spectrogram is not used as an input to the network, although in future work the network may be
generalized to leverage complex phase information. We reshape the magnitude spectrogram into
a 3D array of shape 1 x T" x F'. The first dimension of this array indexes the timbral space or
instrument space, and is expanded through upsampling to separate the single input spectrogram into
spectrograms for each instrument in the mixture audio. The second and third dimensions index time
and frequency, respectively.

The output of the network is a set of N spectral filters, contained in an array of shape N x T" x F.
Each of the N filters is an array of shape T' x F’, the same shape as the mixture spectrogram. The
spectral filters have entries that are bounded by 0 and 1 (Fig. 2). The spectral filters are applied to
the mixture spectrogram through element-wise multiplication, yielding the network’s prediction of
instrument spectrograms for each instrument in the mixture. For example, letting I'(*) be the spectral
filter for the 7*" instrument, the predicted complex instrument spectrogram for instrument i is given by

I() = 'Y % S. Our cost function is evaluated on the predicted instrument magnitude spectrograms
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Figure 1: Network Input and Output

The mixture magnitude spectrogram (right) is fed into TimbreNet and, through upsampling and 2D
convolutions (Fig. 2), the network produces spectral filters (right) for each instrument in the mixture.
At each time-step, the spectral filters assign each spectral peak (middle, top) to an instrument (middle,
bottom). To accurately recover the timbre of an instrument, all of the harmonics must captured by the
spectral filters—thus, the filters resemble frequency combs.

I9; thus, when evaluating the cost function, the spectral filters are applied to the mixture magnitude
spectrogram S. However, in order to use the ISTFT, we need complex instrument spectrograms. Thus,

when recovering instrument audio, the spectral filters are applied to the complex mixture spectrogram
S.

3.3 Basic Loss Function

In cases where a consistent ordering of instrument can be chosen, it is sufficient to use a basic squared
loss function on instrument magnitude spectrograms. In training examples, the audio from each
individual source is known — thus, we can compute the magnitude spectrograms of each instrument
using the STFT. Training examples are represented in arrays Y € RN*T*F  where Y; = I¢?
is the magnitude spectrogram of the i** instrument in the training example. The spectral filters
T ... TN are used to compute predicted instrument magnitude spectrograms Y € RVNXTxF
through element-wise multiplication with the mixture magnitude spectrogram S. The basic loss is
given by the squared frobenius norm of the difference:

L=|Y-Y|32 (1)

We note that the loss function is defined on predicted magnitude spectrograms, and thus does not
explicitly depend on the spectral filters T'¢). The predicted magnitude spectrograms depend on the
filters through the element-wise product. Thus, we consider our model to be end-to-end insofar as it
learns the best spectral filters such that the predicted instrument spectrograms are as close to ground
truth as possible.

3.4 Unordered Loss Function

When the network is trained, the ordering of instrument filters at the network output may not match
the ordering of instruments in training examples. This problem arises in the case of music that
combines any of hundreds of possible instruments, and where a consistent ordering of instruments
can not be chosen. To solve this problem, we developed an unordered loss function that returns the
squared error from the best pairing of output and training example instrument spectrograms.

We first define the pairwise loss vector p € RV 2, where IV is the number of instruments. Each
component of p is the squared difference between a predicted instrument magnitude spectrogram
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Figure 2: TimbreNet Architecture

Deconvolutional layers are used to upsample from one mixture spectrogram to N instrument spectral
filters. 2D convolutions are taken in the timbral-temporal domain, while frequency remains a channel
dimension. All layers use ReLu activations except for the output layer, which uses sigmoid activations
to ensure that the entries of the spectral filters are bounded between 0 and 1. f is the kernel shape, s
is the stride, p is the padding, and # is the number of channels for each convolutional layer.
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Next, we define matrix A € RN’ guch that the product Ap yields a vector of all of the
possible squared losses for each of the N! unique pairings of the output spectrograms with the
target spectrograms. Each of A’s rows is a transposed stacked vector of a distinct permutation of the
standard basis vectors for RY. For example, in the case of N = 2,
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Our loss is the minimal element of Ap. We use LogSumExp, a smooth and differentiable approxima-
tion to max, to evaluate the minimum. Thus, our loss function is:

L = —LogSumExp(—Ap) 4)

4 Experiments, Results, and Discussion

We evaluated our model by calculating the extracted sources’ similarity to ground truth as represented
by the source to distortion ratio. The evaluation, as implemented by Stéter et al. and designed by
Vincent et al., estimates the predicted source as the sum of the target source, noise, interference and
other artifacts using orthogonal projections of the predicted source.

Spredicted ~ Starget + Einterference 1 €noise T Cartifact (5)

The source to distortion ration (SDR) is given by:

2
|| Starget | ) 6)

||einterference + €noise + e21rtifact| |2

SDR = 101og, (

A source distortion ratio of 3dB implies that the extracted audio is 10% times more similar to the
target audio than to noise. We achieved an average source to distortion ratio over all instruments in
our test set of 8.16dB after tuning hyperparameters. This results in professional sounding extracted
audio quality. See Table C for a comparison of subjective audio quality and SDR.

We focused on tuning three hyperparameters - length of the frame used for each training example, the
number of frequency bins in the spectrogram used as input and the probability that we omitted an
instrument when creating a training example. We kept the number of training epochs (60), batch size
(16), number of training examples (6000) and instrument order (’clarinet’, *bassoon’, ’saxophone’,
’violin’) constant. We kept epochs low to avoid overfitting. We believe we succeeded in this regard —
the model performs consistently well on all the songs in our test set and has a validation loss similar
to training loss.

We found that increasing frame size and the number of frequency bins up to a certain point improves
performance. We found that omitting instruments with some probability when creating training
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Figure 3: Tables A and B show the test SDR for different hyperparameter values. In Table A, the
vertical axis is the number of STFT frequencies and the horizontal axis is the training example
duration (in seconds). In Table B, the vertical axis is again the number of STFT frequences and the
horizontal axis is the instrument dropout probability. Table C gives the authors’ subjective measure
of audio quality for different SDR values. Audio quality is rated on a scale of 1 - 5, with 1 meaning
"bad," 3 meaning "fair," and 5 meaning "excellent."

examples (e.g creating a training example with a clarinet, saxophone and bassoon but no violin)
worsens performance. There was one notable exception to both these rules — increasing frame
size to 0.9 seconds from 0.22 seconds decreases SDR by over 4dB when we encode audio in the
time-frequency domain with 501 frequency bins. We hypothesize this is because our learning function
became stuck at a local minimum for this exact combination of hyperparameters. Tellingly, changing
the probability of dropping an instrument while creating a training example resulted in 4 decibels
better performance. Since increasing this probability generally worsened performance elsewhere, we
hypothesize that it provided enough change to break out of a local minimum.

We performed a preliminary experiment with the unsorted loss function, and at this time only have
qualitative results to report. In our experiment, we reduced the number of output instruments N to
3. We produced 1 second long training examples consisting of random combinations of 3 of the 4
instruments. After training, we found that the model could separate audio from 30 second-long test
examples with 3 instruments with good subjective audio quality. However, we observed a channel-
switching phenomenon between the separated clarinet and saxophone audio. Every few seconds, the
clarinet audio would switch to saxophone. At exactly the same time, the saxophone audio would
switch to clarinet. Bassoon and violin audio did not exhibit this channel-switching phenonenon, likely
because the timbre of the bassoon and violin are much more distinct than saxophone and clarinet.
Training on longer examples will almost certainly reduce the frequency of channel-switching.

5 Conclusion and Future Work

To conclude, our model extracts clarinet, saxophone, bassoon, and violin audio from monophonic
mixture audio with exceptionally high fidelity. We ascribe this performance to our convolutional
architecture with timbral embedding, and to our cacaphonous data augmentation techniques. Our
novel unordered cost function will be crucuial when we expand to more instruments, as a consistent
ordering of instruments can not be chosen. Preliminary results show that this cost function is effective,
but that it will be neccessary to train on longer duration training examples.

More work needs to be done to interpret the network and learn how it uses upsampled timbral
dimension. An interpretation of how this network works will yield important intuition about how to
develop improved convolutional architectures for audio source separation. In the future, we hope
to use a 3D convolutional network which performs convolutions over the whole timbral-temporal-
frequency domain to increase parameter-sharing. Incorporating a recurrent layer, such as an LSTM, in
our network may help to leverage musical structure and repeated elements to aid in source separation.

Performance may be further improved by using more input infomration. The mixture phase spectro-
gram may yield useful information about how to separate audio, particularly when harmonics from
two instruments lie on top of each other. As previously noted, instruments are frequently mixed across
left and right channels in stereophonic music in ways that make source extraction much easier!®!.
Rafii et al. detail dozens of models which rely heavily on the existence of two channels to extract
different sources. We are confident that using this information will improve extraction quality.



6 Contributions

Both team members worked equally on this project. Scott Reid spent relatively more time on
model and loss function design; Nathaniel Okun spent relatively more time on infrastructure and
hyperparamter tuning.
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