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Abstract—Since famous paintings can be incredibly valuable,
there is a demand for reliable forgery detection techniques. In
the past decade, attempts have been made at developing such
techniques using concepts from the field of deep learning. In
this paper, we introduce a novel approach to using deep neural
networks for classification of pairs of paintings as either being
painted by the same artist, or painted by different artists. We
are able to show that by combining the concepts of neural style
transfer and face verification, we can produce a model which is
able to differentiate between the styles of a limited number of
artists with very high accuracy. The derived model in its current
state does not seem to generalize to a larger number of artist,
but further work is needed to fully evaluate the approach.

I. INTRODUCTION

Since before ancient Rome there has been skilled forgers
copying the works of famous artist. As of today, forgery is
still a prevalent problem in the art community. A single Picasso
piece could typically be valued at about 100 million dollars
[1]. Thus finding a reliable way of detecting a forge could
hold massive economic value. Modern painting authentication
techniques primarily consist of historical, stylistic and forensic
analysis performed by art forgery experts [2]. Since these
techniques are generally expensive and time consuming in
nature, there is an interest in finding more efficient methods
of authentication. In the past decade deep neural networks
have proven to be very effective at solving problems in the
domain of computer vision (e.g. object detection and face
recognition). Given their success in other areas, there has also
been attempts to design learning algorithms to be used for
painting authentication.

This was also the inspiration for the competition “Painter
by Numbers” hosted on the site Kaggle in 2016 [1]. The
competition challenge consisted of designing an algorithm
which, given two images of paintings, can tell whether the
paintings were made by the same artist or not.

Past approaches to this problem from a deep learning point
of view have mainly consisted of training a classifier that,
for each painting, classifies which artist the painting was
painted by. This approach has been proven to generalize well
to paintings that the classifier was not trained on but that were
painted by artists the the classifier is familiar with. However,
a significant limitation of this approach is that it will not be
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Fig. 1. A triplet of images (anchor, positive and negative) is fed through a
siamese CNN, and an encoding of the style of each image is extracted. The
network is then trained on the triplet loss of the image styles.

able to generalize to paintings by artists who’s artwork the
classifier has not been trained on.

In an attempt to design an algorithm which could potentially
be able to generalize beyond the artists in the training set,
we have implemented a methodology for this problem that
combines the concepts of two well known computer vision
applications: neural style transfer and face verification. The
general structure of the architecture used in this approach is
shown in Figure 1. The method can be outlined as follows:
From a training set of paintings we form triplets, each con-
sisting of a base painting (anchor), another painting by the
same artist (positive) and a third painting by a different artist
(negative). When training, the paintings of a triplet is fed
through a set of pretrained siamese CNNs and an encoding
of the style of each painting is extracted (much like in neural
style transfer). We then train the network further, on the triplet
loss formed in terms of the style encodings of the anchor,
positive and negative paintings. To evaluate if two paintings
were made by the same artist, the paintings are fed through
the same, trained network and the distance between their style
encodings are compared.

In this paper we will go through the details of this approach
and evaluate its performance on the dataset from the 2016
Kaggle competition.



II. RELATED WORK

The problem of using learning algorithms to identify the
artists of paintings has been explored by many others, [3],
[4] and [5], to name a few. One of the first attempts at
recognizing artists from their artwork by using CNNs was
presented by [5]. They were able to show that training a
standard CNN-classifier on down-sized images of paintings
could be an effective method for accurately identifying the
artist of a painting. Additionally, by using occlusion sensitivity
visualizations, they were able to conclude that the classifier did
in fact assign more weight to regions of the images that were
characteristic to its artist.

In a CNN, the input image needs to be of a fixed size. For
this reason, as well as for the sake of computational efficiency,
the image is often down-sampled into a smaller size which
means the fine details in the image are lost. An interesting
approach by [3] was to decompose the image into different
layers of sub-images. With these layers combined they were
able to capture different levels of information in the image. In
theory, this could be an effective approach since the style of
an artist is also captured in the finer details (e.g. brush strokes,
choice of paint, etc.).

Most of the previous work approaches the problem of
identifying the artists of paintings as a classification problem,
attempting for each painting to answer the question “Which
artist made this painting?”. The Kaggle competition mentioned
in the previous section studies a slightly different problem,
where for each pair of paintings you are to attempt to answer
the question “Were these two paintings made by the same
artist?”. The winner of the competition, Nejc Ilenic, was
however able to show that training a classifier, letting it classify
each of the images and comparing the results can be a suc-
cessful approach [6]. More specifically Ilenic’s approach can
be described as follows: A CNN was trained as a multi-class
classifier to identify the artist of a single painting. In order to
compare two paintings, both were input into the trained CNN
separately and the prediction was computed as the dot product
between the two output vectors. A disadvantage is that this
type of approach will be unable to generalize to artists it has
not been trained on, which significantly limits its usefulness
in practice. This begs the question whether it is possible to
design an algorithm which is able to generalize beyond the
artists it has seen in training.

Our suggested design for such an algorithm is based in
great part on the concepts of neural style transfer and face
verification, which are not covered in detail in this paper. A
TensorFlow implementation of neural style transfer by Anish
Athalye was used as code base for the project [7]. Our
solution employs a triplet loss function, frequently used in
face verification as described in [8]. Our method of evaluation
when comparing two images also has significant similarities
to evaluation schemes used in face verification.

III. DATASET

For this project we used the dataset supplied in “Painter by
Numbers” on Kaggle [1]. The dataset consists of about

Fig. 2. A few random images from the dataset.

100 000 images of paintings by 2 319 different artists. Most of
the images are from WikiArt.org, but the competition creator
also included the work of some obscure, less well known
artists as well as that of an infamous forger. The number
of paintings per artist varies significantly. The most well
represented artist has over 400 paintings in the data set while
for the least represented artist, there are only a couple of
paintings. Figure 2 shows a few examples of images in the
dataset.

A. Preprocessing data

The resolution and size of the images varies greatly. To
have a uniform resolution through out the dataset the images
were rescaled and cropped into a much smaller scale of size
3x224x224. This smaller scale also reduces the computational
complexity of training on the images. Lanczos resampling
was used to downscale the images. Since the new resolution
is square the images were cropped to preserve the original
proportions. To help increase the training speed and accuracy
the intensities of the images were centered at 0 by subtracting
a mean pixel value which was included as a parameter in the
pretrained VGG19 weights that were used for our model [9];
see Section IV-B for a detailed description of the model.

B. Subsection datasets and data split

In order to evaluate the performance of our derived ar-
chitectures on a more manageable amount of data, three
smaller subsections of the data were extracted to be used for
development. The three datasets created each consisted of:

1) All paintings in the dataset by the 3 artist with the largest
number of paintings (951 paintings in total).

2) The paintings of 5 randomly chosen artists from the
dataset that each have approximately 100 paintings (559
paintings in total).

3) All paintings in the dataset by the 10 artists with the
largest number of paintings (3 823 paintings in total).

Any dataset used was split into a training set and a test set
with the ratio 0.95 to 0.05.



C. Generating triplets

As mentioned in the introduction, the network was trained
using triplet learning. To be able to use triplet learning the
training data needs to be grouped into triplets. This was
handled in the preprocessing step. A triplet consist of an
anchor A, a positive P (by the same artist as A) and a negative
N (by a different artist). Each image from the dataset was used
as an anchor at least once. The number of times each image is
used as an anchor can be specified as a hyperparameter when
preprocessing. For each triplet, the positive image is randomly
chosen from one of the images painted by same artist in the
dataset and the negative as a painting by a random different
artist.

IV. METHOD

The basic structure of the architecture used when training
is outlined in Figure 3. The main steps of the approach can be
described as follows: Triplets are formed from the dataset as
described in Section III-C. After preprocessing the triplets, the
images are input into a set of siamese networks. The siamese
networks share weights, and each have the architecture and
pretrained weights of VGG19; see Section IV-B for details.
Then, just like in neural style transfer, the output volumes of a
few selected intermediate layers in the networks are extracted.
The extracted volumes are used to compute Gram matrices
to get an encoding of the style of each of the three images
in the triplet. These encodings are then passed into a triplet
loss function, and the cost is computed as the average loss in
the training batch. By backpropagating, the shared weights of
the siamese networks are trained further. An initial approach
for predicting whether two paintings were made by the same
artist was as follows: the two paintings were input into the
CNN - if the difference between style encodings is was than
some threshold, we predicted 0 (not the same artist), otherwise
we predicted 1 (the same artist). This method for evaluating
was later revised into a new approach, described in detail in
Section IV-C

Below we provide a more detailed description of each of
the steps in our method and the architectures used.

A. Baseline model

The winning architecture in “Painter by Numbers“ on
Kaggle, was used as a baseline model [6]. The architecture
supplied by Ilenic on GitHub was trained and tested on each
of the datasets described in Section III-B. Each model was
trained for 200 epochs with default settings. Performance on
the test set was evaluated with the AUC metric. Performance
on the training set was supplied as Fl-score by default; see
Section V for baseline performance.

B. CNN architecture and loss function

The main architecture used for this project is a siamese build
of the VGG19 convolutional neural network, as implemented
and described by [8]. The pretrained weights we used are
available from MatConvNet (a Matlab toolbox which has
implementations of several well-known networks) [9]. For the
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Fig. 3. Overview of training.

purpose of this project, only the layers up to and including
the layer named “relu5_1" in MatConvNet are included in our
siamese build. This is due to the fact that this is the last layer
we are interested in extracting style encodings from, and thus
the remaining layers are not needed.

The choice of which layers to extract style encodings from
was based on a popular implementation of neural style transfer
in TensorFlow by Anish Atalye [10]. Our assumption is that
layers that work well for style transfer should also provide a
representation of the image style that could be of value when
attempting to identify the artist of the image. Thus, we have
used the same layers as Atalye (or some subsection of them)
to extract our style encodings.

For any layer [ in which we want to extract style, the style
en[c]oding is computed as the Gram matrix G (1 of the activation
A l

gl = (A[l])TAU]. 1)

The triplet loss function of style encodings for the anchor A,
positive P and negative N is then defined as
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where GE, GEID] and GE@ are the Gram matrices in layer [
of A, P and N respectively. We want to minimize the norm
distance between encodings of paintings by the same artist (A
and P) and maximize the norm distance between encodings
of paintings by different artists (A and N). In accordance with
the typical approach to triplet learning, a threshold « is added,
and we take the maximum of the distance plus the threshold
and O to be the loss in each layer

l l l l
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l

This is because we do not necessarily want to find a style
encoding that results in the largest possible difference between
the A/P distance and the A/N distance. Rather we want to
find an encoding which results in a sufficiently large difference
between these distances, where the threshold « determines
what distance is deemed sufficient.

If we have m triplets of images in the batch, the cost is
defined as the average of the loss for all triplets in the batch
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Adam optimizer with default parameters was used for training
on the triplet cost. A learning rate of 1 x 104 and a mini-
batch size of 32 proved most effective; see Section IV-D for
details on hyperparameter tuning.

C. Evaluating

The planned approach for evaluating on a pair of images
was initially to compute the 12-distance between the style
encodings of the paintings, and compare it to the average
distance between anchors and positives in the training set, and
anchors and negatives in the training set respectively. If the
distance was closer to the average A/P-distance we would
predict 1 (same artist) for the image pair. Conversely, if the
distance was closer to the average A/N-distance we would
predict O (not the same artist). As this approach quickly proved
to be ineffective on some of the smaller datasets used, another
method for evaluating was synthesized.

The updated approach can be summarized as follows: Upon
completing training, an average style encoding for each artist
in the training set is computed and saved with the network’s
weights. When evaluating on a pair of images, the distance
to each of the average style encodings is computed for both
images in the pair. Each of the two images is classified as the
artist which had the closest average style encoding. If the two
images were classified as the same artist. we predict 1 (same
artist), otherwise we predict O (not the same artist).

Note that this revised approach presents limitations in gen-
eralizing to artists that were not seen during training. However,
if the pair of images to be evaluated consists of two paintings
by the same artist, it may be likely that both images are still
classified to the same (incorrect) artist. Conversely, if the pair
of images are by two different artists, it may be likely that
they would be classified as two different (incorrect) artists.
In this sense, the process of computing the average style

for each known artist might serve as a discretization of the
space of style encodings. Evaluating thus becomes a process
of computing which style “bucket” each painting belongs to,
and checking whether they end up in the same bucket.

D. Hyperparameter tuning

The hyperparameters that were assumed to be most vital in
this architecture were the learning rate, mini-batch size, the
triplet threshold «, the number of layers to extract style from
and which of the pretrained layers to freeze during training.
Out of this set of vital hyperparameters, the most critical
hyperparameters proved to be the learning rate and triplet
threshold a.

For the learning rate, values between 1 x 1073 and
1 x 1079 were tested and a value around 1 x 10~* gave best
performance. For the triplet threshold o, values between 0 and
1 x 10'° were tested and a value around 1 x 10° gave good
results.

We also experimented with a number of different permuta-
tions of which layers the style was extracted from. The choice
of style layers, among the five that were used by [10], did not
seem to result in any significant difference in performance.
The layers we ended up extracting style from was: “relu4_1"
and “relu5_1"; see [9] for a detailed description of the layers
of VGG19.

The mini-batch sizes 1, 8 and 32 were tested. The com-
bination of a mini-batch size of 32 and a learning rate of
1 x 10~ resulted in the quickest convergence. Models trained
on the small sub-datasets described in Section III-B appeared
to converge after 5 — 15 epochs, depending on the complexity
of the dataset.

The best performance was achieved when there were no
frozen layers.

E. Visualizations using PCA and t-SNE

PCA was used to visualize the style encodings learned by
the model. For each subset of the dataset (3 artists, 5 artists, 10
artists) we used the scikitlearn implementation of PCA (with
n_components=2) on the style encodings of the training set and
the test set, and plotted the results in one figure respectively. In
cases where the PCA-figure was deemed too messy or irregular
to interpret, t-SNE, another popular dimensionality reduction
technique by Laurens van der Maaten, was applied to the data
[11]. In the cases where t-SNE was used, we first applied PCA
with n_components=50, and then t-SNE with n_components=2
and plotted the result in a figure. In an attempt to study the
generalizability of our approach, the PCA visualization was
also applied on the style encodings of paintings from a few
random artists not seen during training, and the results were
plotted in a figure.

V. RESULTS

The performance results when training and evaluating on the
different datasets, for the baseline as well as our model, can
be found in Table I. Visualizations of the results through PCA
and t-SNE are presented in Figure 4. The visualizations using
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Fig. 4. PCA and t-SNE for the sub-datasets of 3 artists, 5 artists and 10
artists.
Baseline Our model
# artists  train (F1)  test (AUC) train (AUC) test (AUC)
3 0.984 0.967 0.980 0.963
5 0.972 0.812 0.974 0.833
10 0.857 0.837 0.700 0.633
TABLE I

PERFORMANCE ON THE DIFFERENT DATASETS.

PCA and t-SNE were also applied to a few random artists not
seen during training. Since the results in this experiment were
very poor, and lacked any distinct pattern the figure was not
deemed necessary to present here.

VI. DISCUSSION

In Table I we can see that for a limited number of artists our
approach performs just as well as the baseline. However, as the
number of artists increases the performance seems to worsen.
A reason for this could be the way the artist of a painting
is determined given its style encoding. As the number of
artists increase, so does the number of average style encodings

we need to compare to the style encoding of the painting.
Therefore the distance between each average style encoding
is more likely to be smaller. Finding a more effective way
of determining which cluster a particular painting belongs to
might be a way to improve performance.

As the number of artists increases, and the space of style
encodings becomes more cramped, we believe it may also
become more vital to limit the triplets used for training to
ones that are non-trivial to the model. During training, the
cost seemed to quickly converge to a lower value from which
it was very difficult for the model to improve any further.
This could be due to a lack of difficult triplets (i.e. triplets
where, before any training, the style encodings of A and N
are similar, and/or style encodings of A and P are dissimilar).

Since the PCA visualizations have very distinct and tight
clusters for the different artists when the number of artists is
small, it is reasonable to think that the network has in fact
learned an underlying style encoding for the images to some
extent. However, as mentioned in Section IV-E we tried using
paintings from artists unknown to the model as input to the
visualization in order to see whether the network could find
style patterns for each artist and with that distinguish their
paintings from one another. The outcome of this experiment,
as stated in Section V, did not show signs of such gener-
alization. However these artists were chosen at random and
therefore their styles may have been similar to some extent.
An interesting experiment would be to instead hand-pick a
set of artists with very distinct and different styles and see if
there is some clearer clustering. On the other and, it might
also be unreasonable to think that the network could learn a
generalizable style encoding from such a limited number of
artists. Finding a sustainable way of training on an increased
number of artists is thus perhaps the most critical aspect
moving forward.

VII. CONCLUSION AND FUTURE WORK

We were able to show that training a set of siamese CNNs
on the triplet loss of style encodings can be an effective way
of telling the work of different artists apart when the number
of artists is limited. As the number of artists increased, the
performance of our model worsened compared to the baseline
model (a traditional artist classifier).

The current approach to evaluating on a pair of images poses
significant limitations, as described in Section VI. Therefore,
there is potential for improvement if a new method for evalu-
ating could be synthesized. Since the triplets used for training
were generated randomly, it is also likely that there is a lot of
redundancy in the training set in the form of trivial triplets. A
future improvement would therefore be to find a algorithmic
method for generating triplets that are predominantly non-
trivial.
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IX. CONTRIBUTIONS

Both project members shared the workload of the project
in equal parts. Albin worked a bit more on preprocessing
and code structuring, while Josef worked a bit more on the
documentation and visualizations. The central aspects of the
project (i.e. building, training and testing our model and the
baseline) were shared in equal parts.

X. CODE

All code used for this project can be found in
our GitHub repository “artist-differentiator”, available at
github.com/josefmal/artist-differentiator. Then main program-
ming framework we used was TensorFlow [12]. Other libraries
used included scikit-learn, numpy, pillow, scipy, hSpy, tqdm.
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