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Abstract

Cerebrovascular diseases are an important cause of mortality and morbidity within the pediatric
population, and effective treatment depends on accurate and efficient diagnosis. Magnetic resonance
angiography (MRA) is a noninvasive technology that allows visualization of the vasculature of the
pediatric brain without necessitating exposure to radiation and is an important diagnostic imaging
tool used for evaluating suspected cerebrovascular disease in children. However, due to complex
developmental changes of the brain and skull, interpretation of pediatric MRA remains an enormous
challenge for most clinicians and a source of significant burden when life-threatening events require
immediate diagnosis and decision-making. Therefore, there is an urgent need for a more efficient and
accurate diagnostic decision support for pediatric MRA. We applied deep-learning methodologies
to develop a classifier model to distinguish normal versus abnormal MRA. Our model relies on a
Residual Network (ResNet) architecture pre-trained on ImageNet. Our innovative application of deep
learning to pediatric MRA interpretation can serve as a foundation for creating a novel computer-aid
diagnostic support system.

Code: https://github.com/kingofleaves/CS230Fall2018MRA

1 Introduction

Cerebrovascular disorders are an important cause of mortality and long-term morbidity in the pediatric population,
affecting as many as 1 in 1500 neonates and 1 in 3000 children!!). Accurate diagnosis is essential to selecting appropriate
treatment or management options to minimize the potentially long-lasting effects of cerebrovascular disease.

Magnetic resonance angiography (MRA) is a commonly used noninvasive diagnostic tool for evaluating suspected
cerebrovascular events in children that utilizes flow-enhancement technique without requiring contrast or ionizing
radiation. However, accurate interpretation of pediatric MRA requires years of training and understanding of MRI
physics to distinguish true pathology vs. artifact, physiologic differences across pediatric age, and pediatric-specific
vascular diseases, and thus can pose significant challenges in diagnosis.

For such nontrivial tasks, deep learning has emerged as the new frontier to developing clinical decision support tools
that provide real time diagnostic support and guide clinical decision-making. Given high quality, labeled data, these
methodologies have shown to perform imaging interpretation tasks on a level similar to that of expert radiologists >34,

We propose to apply advanced deep learning methodologies to automatically distinguish between normal and abnormal
pediatric MRA, specifically those from patients with moya-moya disease. Using our large-scale database of all pediatric
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Figure 1: Examples of normal and abnormal MRA images

MRAs performed at Lucile Packard Children’s Hospital from 2011 to 2017, we will develop a deep-learning classifier
model to distinguish normal versus abnormal brain blood vessels. When successfully completed, the development of
these models will significantly aid in the efficiency of pediatric MRA interpretation, serving as a foundation for creating
a computer-aided diagnostic system that can be integrated into current imaging platforms to provide accurate, real-time
clinical decision support.

2 Related work

Magnetic Resonance Imaging (MRI) is a particularly hot field for applying deep learning, due to the nature of the
imaging process which generates huge 3-dimensional volumetric data for each patient. Trained medical professionals
need to scroll through a set of cross-sectional data multiple times to understand what is happening with the patient,
which takes away from time they could be spending otherwise tending to patients.

Avendi et al.!3!, Prasoon et al.[®! and Dalmus et al.!”! all use deep learning as a tool to automatically segment important
features for computer-aided applications using heart, knee cartilage and breast MRIs respectively. These papers show
the usefulness of deep learning in helping cut down on the amount of busy work that medical professionals have to do,
such as labeling images for computer-aided applications, thereby directing these limited resources to more valuable
tasks, such as disease diagnosis and cure.

Work has also been done in applying deep learning for segmentation tasks in brain MRI, such as Isin et al.'®)’s and
Havaei et al.!?’s works on brain tumor segmentation. Brain image segmentation on infants were also conducted
by Zhang et al.['%1, However, these applications all stop at the segmentation stage, requiring other computer-aided
applications and/or medical professionals to step in to finish the diagnosis process.

There have been many steps taken to bring deep learning beyond segmentation of MRI images. For instance, Li et al.[!!]
used deep learning to help augment available image data for improved diagnosis of brain diseases, while Olut et al.!?]
uses Generative Adversarial Networks (GANSs) to generate synthetic Magnetic Resonance Angiography (MRA) data
from existing MRI images to aid diagnosis. While these steps are great in demonstrating the abilities of deep learning in
helping augment existing data to enable better diagnosing of diseases, there has not been any work done on diagnosing
cerebrovascular diseases automatically through neural networks, without the need for a human medical professional in
the process.

In our paper, we attempt to tackle this issue by training a neural network on MRA data to develop an automated
detection system between normal and abnormal blood vessel phenotypes in the brain.

3 Dataset and Features

3.1 Data

Our dataset came from a large-scale database of pediatric MRA images in from 2011 to 2017, which were compiled
by Kristen Yeom, M.D. and her lab. The dataset consisted of 278 adolescent patients, of which 227 displayed normal
MRASs and 51 displayed abnormal MRAs indicative of moya-moya disease. The MRA scans for each patient contained



of a varying number of cross-sections (either 248 or 256 cross-sections) in the form of DICOM files. Each DICOM
image was 512-by-512 and contained three different channels. Sample images are shown in Figure 2.

Figure 2: Sample MRA slices from our dataset

3.2 Pre-Processed Features

To process the data into a form that we could feed to our baseline logistic regression model and convolutional neural
network, we compressed the images and decreased the resolution to produce a set of 256-by-256-by-3 as well as a set
of 64-by-64-3, to see if the resolution affects performance. For the logistic regression baseline model, we additionally
flattened both sets of image to produce a single vector of features of size (n x n x 3, 1) for each patient, where n
represents width or height of the image.

One consideration we had to keep in mind while handling this dataset was the fact that indications of blood vessel
abnormality are not present in every cross-section image for afflicted patients. Therefore, labeling each cross-section as
normal or abnormal and training on this dataset would not prove fruitful, as it would result in the model learning to
classify a perfectly normal cross-section image as abnormal if it came from a moya-moya disease patient. Therefore,
we decided to take the mean across cross-sections of every feature so that we could have a single feature matrix for
each patient that is labeled normal or abnormal MRA.

4 Methods

To classify normal from abnormal MRA images, we implemented a series of models based on related experiments
found in the literature. For our baseline model, we utilized logistic regression to get a measure of how difficult this task
might be. For our main exploration of the project, we experimented with a couple deep learning models.

4.1 Logistic Regression

Logistic regression, a common binary classification algorithm, utilizes the sigmoid function (also known as the logistic
function). Incorporated with linear prediction parameters, 6 and the features of x, the classification prediction is given
by the following probability distribution:

1

Mol = T

As we did not have such a large dataset, we used a quasi-Newton’s Method for convergence. Newton’s method requires
the Hessian of the loss with respect to the features to be calculated, which is impractical for high dimensional data.
For fewer features, Newton’s method has the benefit of converging quickly, which also allows us to use batch gradient
ascent. Newton’s method update rule is given by the following:

0:=0— H'V4l(0)
4.2 Deep Learning

We chose to primarily focus on deep learning as our most promising model, as we saw an analogy between our data and
image-processing that has been proven to be effective with deep learning models.

4.2.1 Convolutional Neural Networks

Convolutional Neural Networks '3 (CNNs) are used frequently in image recognition/classification tasks.

This is done by taking a weighted sum of an n-by-n cell and outputting the result as a single pixel in the output, as
shown in Figure 3. This is done over all combinations of n*n pixels over the input image, hence outputting an image of



similar size, depending on the stride of the cell. This is done over the third dimension too, which is commonly referred
to as channels. These n-by-n cells of weights are called "filters" and generate a set of two-dimensional output matrices
that constitute the output of this convolutional layer.

4.2.2 Residual Networks

Residual Networks!'#! (ResNets) are used commonly in very deep neural networks due to their tendency to avoid the
vanishing/exploding gradient issue that many conventional neural networks experience when they are too deep.

Figure 3 shows a single residual unit in the neural network. The bypass adds an identity input z to the output of the
residual unit, which makes it easy for this unit to learn an identity function (input = output) since it just needs to train
the weights to be much smaller than 1 so that the major contributor in the output becomes the input.

This leads to an ease of training for extracting very high level features which enable the neural network to identify very
complex relations in data, which may otherwise require human professionals with years of experience to identify.
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Figure 3: Left: Convolution Layer Right: Residual Network Cell

Taken from: https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050, https:/giita.com/yu4u/items/4a35b47d5cab8463adcb)

5 Experiments/Results/Discussion

In the beginning, we were surprised at how well our logistic regression baseline model performed, regardless of whether
we pre-processed the images into 64-by-64 or 256-by-256 images. However, our calculated F1 score for the test set was
much lower than the accuracy score, which indicates that our model may be picking up a bias toward a specific class.
We then tried boosting our training set by including every brain scan that we had for the same MRA patients on the
server, and noticed an immediate increase in our model’s test accuracy as well as F1 score, as presented in Figure 5.

Train Acc Train F1 Test Acc Test F1
LR (all images) 0.98431 0.96117 0.91765 0.74074
LR (only MRA images) 1 1 0.9 0.6

Figure 4: Logistic Regression Performance Results

We then took the CS 230 code example for vision tasks on Pytorch ! and edited the data loader to feed in our pre-
processed images. This model used three pairs of convolution-batch norm layers, followed by a max pooling layer and a
rectified linear unit (ReLU) layer. The output is flattened and fed into a fully connected layer, followed by a log softmax
layer to get our prediction. Then the model used a cross-entropy loss to train the weights. We trained the model through
mini-batch gradient descent, and some initial tuning led us to settle on a mini-batch size of 32.

Surprisingly, this model performed worse than our baseline logistic regression model. We thought our problem in trying
to apply CNNs was two-fold: 1) We did not have a large enough dataset for the model to be effectively trained to detect
blood vessel abnormalities, and 2) Our model was not deep enough to truly learn the features of the MRA images. To
address this problem, our solution was to bring in a ResNet architecture pre-trained on the ImageNet database. We
edited the torch vision code example to call pre-trained ResNet18 and ResNet50 models to test how the difference in
deepness of the models would affect performance. The comparison between the performances of the CNN models are
displayed in Figure 6.

'https://github.com/cs230-stanford/cs230-code-examples/tree/master/pytorch/vision



Train Acc Dev/Test Acc
CS230 Torch Vision Example 0.906 0.827
ResNet18 0.969 1
ResNet50 1 1

Figure 5: CNN Performance Comparison

Based on these results, it seems that the deeper ResNet50 model was better suited to this classification task. This would
make sense, as it takes a trained eye to detect the difference between normal and abnormal MRAs, so we would expect
the differences in the images to be subtle. Therefore, a deeper model may be able to pick up on these subtle differences
in features more effectively than a shallower model.

We additionally tried tuning the learning rate with our ResNet models to see how it impacted performance. As expected,
we found that the lowest learning rate of 0.0001 for both the ResNet18 and ResNet50 resulted in the most effective
training of these models, because higher learning rates most likely resulted in overstepping the ideal parameter estimates.
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Figure 6: Learning Rate Hyperparameter Tuning for ResNet18 and ResNet50

Based on these results, it seems that the deep learning approach proved suited to the task of pediatric MRA classification.
Though logistic regression performed exceedingly well on the training set, it seemed to overfit to the training set,
resulting in a worse performance on the testing set. Across the board for both logistic regression and CNNg, it seemed
that an augmented training set that included non-MRA images was a solution to mitigating the effects of overfitting.

6 Conclusion/Future Work

We can see there is much promise in the pursuit of automated diagnostic classification of blood vessel abnormalities
in MRA scans. Much as we anticipated, we saw an improvement in the performance of our model when we could
augment the training dataset, whether by including non-MRA scans or using a pretrained model.

Potential future directions with this project would be to include a saliency map, perhaps using GRAD-Cam and
gradient-based localization, to pinpoint exactly where in the image the model detects an abnormality. The benefit of
this would be to direct the radiologist’s attention to the regions and cross-sections of interest to save them the time
of flipping through every cross-section to find the abnormality. The challenge we anticipate of such a feat would be
to keep track of which cross-section contributes to the overall flattened image, because, as previously mentioned, we
pre-processed the images by averaging every pixel across all cross-sections per patient. We would either have to find
a way to keep track of which cross-section contributes to the pre-processed image, or feed in the whole unprocessed
image to a brand new type of architecture, so we do not lose that extra dimension in our model.



7 Contributions

Yong-hun Kim and Ye Wang contributed to the writing of this project report. Kim implemented the logistic regression
model on sklearn, edited the dataloader for the Pytorch vision ResNet models and ran/troubleshooted them, and pulled
and processed the data from the lab server. Wang was heavily involved in the initial stages of the project, setting up the
server and GitHub for use in the project. Ye also implemented the ResNet model and set up transfer learning from the
pretrained ImageNet data from PyTorch Vision’s ResNet models. Dennis Chang was involved generating plots and
putting the poster presentation together.
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