CS230

Extended Hotword Detection to Arbitrary Audio
Triggerwords

Kevin Yeun
Department of Computer Science
Stanford University
kyeun@stanford.edu

Github: https://github.com/kyeun/cs230-final

Abstract

We explore an extension on a deep learned sequence model to detect whether
a model trained on a supervised speech recognition task (recognize a subset of
words) can be extended to measure similarity between arbitrary audio clips of
spoken words that are not from the original subset. There exist very accurate
and performant hotword detection models today which are modeled as supervised
binary classification problems with respect to a single triggerword (e.g. "Alexa",
"OK Google", ...). A generalized model could provide very large utility to smaller
independent companies and applications to use their own hotwords or for users to
specify hotwords which are more natural in their native language.

1 Introduction

With hotword detection today, models are primarily trained specifically as a binary prediction model
on whether a sound clip contains the word, with the model outputting the probability. An interesting
application would be to create a model which may be used across many different use cases which
may not share a common triggerword, for example in a platform scenario where a thin API client may
be established and provided on any number of different client devices, or in a scenario where a user
may want to customize the triggerword of their own device. Thus, we frame the problem statement:
can a generic model be trained to work for any arbitrary triggerword, taking 1-second input sound
clips and outputting a similarity measurement (substituting as a probability prediction) which can be
used to predict whether the hotword should be activated?

For our model we contain three parts: a preprocessing step to convert he 1-second audio clip into a 2
dimensional spectrogram, a deep learned sequence model to output a softmax prediction on a subset
of words available during training, and a similarity function which takes the softmax activation and
outputs a prediction on whether a test sound clip is similar to a base sound clip and should activate
the hotword detection. The softmax activation is treated as a representation of the original audio clip
in a new basis vector space, with each dimension measuring similarity to one of the original training
words.

2 Related work

State-of-the-art applications of hotword detection can most commonly be seen in the emerging "Smart
Device" market, led by large technology companies such as Google and Amazon. "Small-footprint
keyword spotting using deep neural networks" [1] describes a deep neural network used at Google

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

as an improvement over earlier Hidden Markov Models with additionally low footprint benefits.
"Convolutional Neural Networks for Small-footprint Keyword Spotting" [2] published 1 year later
in 2015 introduces Convolutional Neural Networks as another improvement upon the earlier model.
CNN s are also proposed in "Applying convolutional neural networks concepts to hybrid NN-HMM
model for speech recognition" [3] as a means to improve time-invariance in the model. The CNNss
are trained to recognize the spectrogram representation of the audio clip which represent the 1-
dimensional signal as 2-dimensional time and frequency. Spectrogram decomposition in conjunction
to CNNs continue to be a popular choice for audio recognition tasks due to their non-lossy nature
compared to other representations such as MFCCs (Mel-frequency cepstral coefficients) [4].

3 Dataset and Features

The Google Speech Commands dataset [5] is used, consisting of 105,000 16kHz WAVE audio files of
34 different words. Each file is labeled with the true word and is approximately 1 second in length
each. For our analysis we used a word-balanced training set size of 33861 and a test set size of 1292.

Word Number of Utterances
Backward 1,664
Bed 2,014
Bird 2,064
Cat 2,031
Dog 2,128
Down 3,917
Eight 3,787
Five 1,052
Follow 1,579
Forward 1,557
Four 3,728
Go 3.880
Happy 2,054
House 2,113
Learn 1,575
Left 3,801
Marvin 2,100
Nine 3,934
No 3,941
Off 3,745
On 3,845
One 3,890
Right 3,778
Seven 3,998
Sheila 2,022
Six 3,860
Stop 3,872
Three 3,727
Tree 1,759
Two 3,880
Up 3,723
Visual 1,592
Wow 2,123
Yes 1,044
Zero 1,052

Figure 1: Dataset content breakdown from "Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition”

The first step of the extended model involves the preprocessing step to convert the 1-second audio clip
into a 2-dimensional spectrogram representation. This input serves as the input to the deep learned
sequence model. The 16,000 (corresponding to 16 kHz) length input is converted into 119 timesteps
and 134 frequency steps, which represent 15946 features and is nearly lossless.

4 Methods

For the sequence model, we used a model consisting of the following layers: Conv1D(196 fil-
ters, kernel size=13, stride=4), BatchNormalization, RELU activation, Dropout(0.8), LSTM(128),
Dropout(0.5), LSTM(128), Dropout(0.5), Dense, Softmax activation, with a total of 696,918 trainable

parameters. The model is built in Keras on Tensorflow [6] and is heavily inspired by the models
used in the “Sequence Models” deeplearning.ai Coursera course [7] in “Emojify” and “Triggerword
Detection”.

Ty

Softmax
Dropout
— LSTM |—— LSTM |——| LSTM —> ... ——| LSTM |——
4 4 A
| Dropout | | Dropout | | Dropout | | Dropout |
A ES y
— LSTM |— LSTM |——| LSTM ——> ... ——| LSTM
Dropout (0.8) Dropout (0.8) Dropout (0.8) o Dropout (0.8)
RelLU RelLU ReLU RelLU
Batch Norm Batch Norm Batch Norm s Batch Norm

T [I I

| CONV-1D (iilter size = 15, stride = 4, num filters = 196) |

) 3 3 [
X T ¥ x XY x T

Figure 2: Deep learned sequence model with 696,918 parameters

The objective function used is the categorical crossentropy loss, which maximizes the true distribution
likelihood. This is applicable to this use case as the softmax activation is treated as a likelihood
estimation between the original set of training words.

M

> Yaplog(pas) (1

b=1

The softmax activation is fed to a final reduction function which outputs a similarity measurement
between the base and test audio clips. We use the cosine similarity function

-y
EI Y

with an additional hyperparameter « which determines a suitable similarity threshold for classifying
the base and test audio clips as equivalent and activating the hotword detection.

cos(z,y) =

@

5 Experiments/Results/Discussion

The sequence model is trained with Atom optimizatation (learning rate = 0.01, betal = 0.9, beta2 =
0.999, decay = 0.01) and a batch size of 1000. This learning rate is used since the model is trained
without any basis model (from scratch) and has a medium sized category target, and it is able to
complete 100 training epochs in under 2 hours on a 4-core VM. The sequence model itself performs
quite reasonably achieving 0.6594 accuracy and 2.918 loss on the test set after 100 training epochs.

The extended model is then analyzed with some manual test inputs on words absent frmom the
original training set. For 50 test clips (on new 25 words), and using « of 0.5, the extended model

Train loss / Test loss / Mean / Variance Test Cosine | Mean / Variance Test Cosine

PO accuracy (SM) | accuracy (SM) | similarity (same word, EM) | similarity (other words, EM)
10 0.8811/0.7399 |2.383/0.6076 |0.8529/0.07874 0.04275 / 0.01168

50 0.5071/0.8407 |2.667 /0.6494 |0.8975 /0.06404 0.02779 / 0.008665

100 0.3681/0.8815 |2.918 /0.6594 |0.9059 / 0.06291 0.02469 / 0.008303

Figure 3: Deep learned sequence model metrics

achieved about 78% accuracy and 42% recall. Figure 4 shows example waveforms for the word
"Stanford", which achieved cosine similarity of 0.6696 and obtained leading activations for basis
words "Sheila" and "One". This result supports the hypothesis that similar sounding words which are
not from the training dataset could be supported by the extended model. It also suggests non-verbal
utterances could be supported as long as the sound can be reconstructed in the input word vector
space. Given the leading basis words lack large similarity with some of the syllables from the example
word "Stanford", it is possible that the model would need additional curated basis words to perform
well. This is further supported by the low recall on the manual test.

e

(a) Base

(b) Test

Figure 4: Waveforms for "Stanford" test audio

6 Conclusion/Future Work

The model shows promise on the ability for this type of model to exist. With the low number of
training examples, naive basis words, and short training time, the model performs quite reasonably
under those circumstances.

Future work includes exploring more specialized similarity functions for this task or finding more
optimal word bases, either by dimensionality reduction (SVD) or involving acoustical characteristics
of the words. Also, larger datasets should be used to evaluate the extended model. For the particular
use case, it would be better to have a large dataset which includes many words spoken by a single
person to avoid polluting recall metric due to different speaking patterns.

References

[1] Chen, Guoguo, Carolina Parada, and Georg Heigold. "Small-footprint keyword spotting using deep neural
networks." ICASSP. Vol. 14. 2014.

[2] Sainath, Tara N., and Carolina Parada. "Convolutional neural networks for small-footprint keyword spotting."
Sixteenth Annual Conference of the International Speech Communication Association. 2015.

[3] Abdel-Hamid, Ossama, et al. "Applying convolutional neural networks concepts to hybrid NN-HMM
model for speech recognition." Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International
Conference on. IEEE, 2012.

[4] Wyse, Lonce. "Audio spectrogram representations for processing with convolutional neural networks." arXiv
preprint arXiv:1706.09559 (2017).

[5] Warden, Pete. "Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition." arXiv preprint
arXiv:1804.03209 (2018).

[6] Keras.io, ‘Keras: The Python Deep Learning Library’, 2018. [Online]. Available: https://keras.io/

[7] Coursera.org, ‘Sequence Models’, 2018. [Online]. Available: https://www.coursera.org/learn/nlp-sequence-
models

