Locating Ships on the High Seas and in Ports

(CS230 Project Final Report (Category: Computer Vision)
by Lee Arthurs: larthurs@stanford.edu, December 16, 2018

1 Overview

For our project for CS230, we plan to detect all ships in satellite images as quickly as possible. This is a recent
kaggle competition, Airbus Ship Detection Challenge: (https://www.kaggle.com/c/airbus-ship-detection).
Ship detection has a wide range of real life applications, in the areas of maritime safety, marine traffic and
transportation planning, monitoring of marine pollution, illegal fishing, piracy and irregular migration, bor-
der control, etc. Our goal is to locate ships in the images and provide segmentation masks of where the ships
are located with in the satellite images.

2 Data

The dataset has been provided by the sponsoring company on Kaggle. It is 29 GB and consists of 192,561
images. 150,000, 78%, of the images do not have ships in them. There is a a file which lists the encoded
pixel masks for each ship in satellite image. The picture below shows four sample images and then in the
bottom row masks added to the images, where the ships are.

20 3 &0 3

We divided the data randomly into 172,561 Training Images, 10,000 Validation Images and 10,000 Test
Images.

3 Data Set Challenges

There are a number of challenges specific to our task that we may have to address. Images may have the
following features.

e Presence of clouds near the ships or ships underneath haze and other atmospheric phenomena

e Presence of large wake behind the ship which should not be included in the bounding box

Complexity of other objects in ports and marinas (buoys, barges, wind turbines), coastal elements
(tiny islands)

Sun reflectance on the sea, wave phenomona due to high winds

Ships that are partially visible in the image, multiple ships coupled together, variation in ship sizes,
etc

Our dataset is unbalanced with almost 78 percent of the images in the dataset have no ships in them
at all.

4 Architecture Search

Our task falls under the category of object detection and segmentation. This is an area of active research.
Our review initially suggested that Mask R-CNN [5] (for segmentation) and YOLO [9] (for fast object
identification/localization) should be our initial focus with objective of using transfer learning. We spent
extensive time building transfer learning models with YOLO3, training a range of top layers from 3 to 50. We
were not successful of getting any good or useful results with this approach. As mentioned later in Section
12, Contributions/Extenuating Circumstances, my original partner, Suren Talla, was building models using
Mask R-CNN, but due to significant family issues that work was not completed and this became a solo
project for just me instead of the original group project.

After not finding success with YOLO3, we examined in more detail the successes in medical scans and
biology. The paper by Zhang et all [12], examined different structures to perform segmentation and prediction
of lunch cancer tumor regions. Their results found that the U-Net structure worked best for their data, which
seemed in many ways similar to our data.

5 U-Net Structure

Here we briefly describe the U-Net structure. The key difference between the U-Net structure and more
vanilla CNNs is that information both flows through the network and also flows between different levels.
This is best described visually in this attached chart. The U-Net is composed of two different modules: a
down module and an up module. The structure of these modules here is our final best structure and you
can see the different components. The key to note on the down module is that information flows out of the
module from two different spots and flows to two different places. The Maxpool output goes to the next
module in the chain. The RELU output (skipping Maxpool) goes across the model to the same ”height” up
module. You can see this on the far right showing an U-Net eight level structure. In the same way that the
down module outputs information at two spots the up module receives information at two spots as you can
see in the picture. The up module uses Concatenate to combine this information after the 2x2 CNN. The
final top layer is a 3x3 CNN followed by a Sigmoid activation to output the projected mask.

U-Net Down Module U-Net Up Module @U-Net Structure: Top 333 W

Sigmoid
8 Layers ssation
of > 3-

— Mod7

T x=2Tnd>®
ETmZ2T o> ®

B B
A A
T T
(& €
H H
N N
R R
M M

6 FEvaluation and Loss Functions

We decided to use the dice coefficient calculated using the actual masks and the projected masks to evaluate
or model results. This is commonly used in tasks that our generating masks. Values range from 0 to 1, with
1 representing the images being the same. The closer to 1 the better the result. The formula is as follows:

23 (P +T;) +1
YP+YTi+1

Dice Coef ficient = (1)
In this formula, P; is the projected mask from the model for each satellite image and T; represents the actual
provided true mask for each satellite image. The plus one on the top and the bottom is a smoothing value.
The loss function used in the U-Net structure was the negative of the Dice Coefficient.

7 U-Net Structural Choices and Tuning

Since we were training the U-Net from scratch (not through transfer learning) we reduced the size of the
input images and masks from (768,768,3) and (768.768,1) to (96,96,3) and (96,96,3) respectively using numpy
functions to make the model and data more manageable. We also normalized the input satellite images using
the mean and variance of the training data set. We experimented initially training the model using smaller
data to see what size U-Net and structure would give the best results. We found increasing the size of the
U-Net from 8 layers to 10 layers by adding an additional Down Module and Up Module actually slightly
reduced the results. We found a significant benefit from adding Batch Normalization to the model in the spots
shown in a module descriptions above. We could both increase the learning rate and achieve significantly
better results. The original U-Net structures which found in the papers and Github did not have Batch
Normalization.

Given the significant amount of images with no ships, we experimented with training the model just
using Train data and Validation data with ships which reduced the train data to from 172,561 to 38,049
images and the validation to 2,193 images, which made training time for running the model reasonable.
After experimenting with a range of training rates from le-3 to le-5 we were our best results with the model
structure in above chart with a Dice Coefficient of .972 on the training data and .952 on the validation data
(both only on the images with ships) using our best learning rate of le-4 after 150 epochs. These results of
course do not reflect our final results because they do not include the images with out ships.

8 Add Another Model Layer: Inceptionv3

The next was to an image classification layer to just before the U-Net to determine whether an image
contained any ships or not. We trained the top layer of an Inceptionv3 model for this from Tensorflow Hub,
(https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1).

For JPEGS
Not Ship Generate
Classified Blank

Ship Masks

Inceotionv3
Model:

Classifies U
— Ship/No Ship v "“ftI‘
Feed Feed jPEGSs Ores
All ‘asaaad Generates
Just Ship -
Data Classified M ERS

As can see from the chart the model will now first use Inceptionv3 to classify images as either Ship(s) or No
Ship. The images which are classified as no ship will automatically be outputting empty masks and those

images, which are classified as having ships will then be fed into the U-Net model and the outputs from
U-Net model will be the final results.

The Inceptionv3 was trained using with a variety of learning rates as you can see in the chart the best
Validation results were for a learning rate .005 at a 94.1% rate. 63% of the incorrectly categorized images
in the Validation set were images with no ships that were categorized as having ships.

InceptionV3 Results by Learning Rate
(LR Train% [val% [Test% |
.002

9357 93.6% 93.5%
.005 94.2% 94.1% 93.8%
.00875 94.1% 94.0% 93.8%
.01 94.1% 93.9% 93.9%
.02 93.8% 93.6% 93.62%
.05 93.7% 93.3% 94.3%

9 Putting the Models Together

Next we look at the results combining the best case U-Net and the best case InceptionV3. As can be seen
in this chart, combining the InceptionV3 and the U-Net together has a dice coefficient of .953 on running
all the test data. Interestingly if we run the U-net which was just trained on the no ship images on the full
test data we get a dice coefficient of .943 so the InceptionV3 is improving our results by only .01. I also ran
a hypothetical scenario as to what our results would be if the Classification Model has been perfect and our
results would have been .961. This suggests that efforts to improve results are better spent on improving
the U-Net than the classification stage.

Final Results

TEST Data
Dice Coefficient

Combined Inceptionv3 and .953
U-Net

.943
Just U-Net
U-Net with Perfect 961

Classification Model

10 Code

My code is in the GitHub https://github.com/lartthurs/CS230FInalProj. The code was started using
github code, which is noted in the Jupyter Notebooks. We then modified the code was then modified for the
specific models to be run and also to organize the data to work well with this specific data.

11 Next Steps

Shown below are three examples of images ith different types of misclassifications and their resulting Dice
Coeflicients. The first one is missing one very small ship but does a good job with the other four. The second
one totally misses the ship because of the clouds and the third one confuses the wake of the ship with the
ship predicting the ship in the small ship in the wrong location.

As we mentioned in the prior section the potential benefits from improving the U-Net results is greater
than than the benefits from improving the ship no ship classifier. A logical next step is data augmentation,
which could help the U-Net especially for cases such as the clouds shown here. Smaller ships identification
might benefit using larger image sizes in the model than the (96,96,3) and (96,96,1) which we used to train
the model. This would require more processing power and time for running scenarios.

U-Net Example Results: Val Data

Ground truth

Dice Coefficient for
Projected Mask: .968
Missing Tiny

Ship Center Far Right

Original Truth Mask Projected

Ground truth Prediction

Dice Coefficient for
Projected Mask: .007
Ship Not Picked up by
Projected Mask
Probably Due to
Clouds

©)) ° 2 © @ o

Original Truth Mask Projected

Input Ground truth Prediction

Dice Coefficient for
Projected Mass: .50
Very Small Ship with
large wake. Projected
mask had small ship in
Wake instead of
where

It actually is

) © ® o

) ® ®

Original Truth Mask Projected

12 Contributions/Extenuating Circumstances

I had originally partnered with Suren Talla, another SCPD student in CS230. We worked together through
the Milestone. Since the Milestone he had significant family issues and ultimately had to drop from the
project. He contributed in choosing this project, the initial research and ideas discussed in the Milestone.
All the modeling done here is all my work and has been done since the Milestone. Some of the writing here
was copied from either our Proposal or Milestone so that writing was the combined work of Suren and me.
All other writing is my work. When I use the term ”we” in this report it refers to just me except in the
cases noted here for the work before the Milestone.

A Appendices

A.1 Opensource detection and segmentation architectures: reviewed and noted
in Jupyter Notebooks in Github where used as starting code

InceptionV3 TensorFLow Hub - https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1

Tensorflow Hub Example - https://raw.githubusercontent.com/tensorflow/hub/master/examples/image_retrain
U-Net - https://github.com/jakeret/tf_unet

U-Net - https://github.com/0OverFlow7/Ultrasound-Nerve-Segmentation

YOLO (darknet) - https://pjreddie.com/darknet/yolovl/ (C++)

YOLO v2 (darknet) - https://pjreddie.com/darknet/yolov2/ (C++)

YOLO v3 (darknet) - https://pjreddie.com/darknet/yolo/ (C++)

YOLO (tensorflow) - https://github.com/thtrieu/darkflow

Mask-RCNN - https://github.com/matterport/Mask_RCNN (Only used by Suren)

Model Zoo - https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_

References

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(12):24812495, Dec 2017.

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40:834-848, 2018.

[3] Sergey Ioffe Jonathon Shlens Zbigniew Wojna Christian Szegedy, Vincent Vanhoucke. Rethinking the
inception architecture for computer vision. 2015.

[4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based fully convolu-
tional networks. In NIPS, 2016.

[5] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross B. Girshick. Mask r-cnn. 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2980-2988, 2017.

[6] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fis-
cher, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and et al. Speed/accuracy trade-offs for modern
convolutional object detectors. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jul 2017.

[7] Auerlien Lucchi Alexandre Refregier Joel Akeret, Chilhway Chang. Radio frequency interference miti-
gation using deep convolutional neural networks. 2017.

[8] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, and
Alexander C. Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[9] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 779-788, 2016.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39:1137-1149, 2015.

[10

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI 2015.

[12] Shin-Cheung Lai Jun Xiao Runze Zhang, Zhong Guan and Kim-Man Lam. Deep neural networks for
lung cancer tumor region segmentation.

