Using Deep Learning to Predict the Stock Market

Evan Rosenman
Department of Statistics, Stanford University
rosenman@stanford.edu

Abstract

We consider the problem of using deep learning to predict 10-day market-
residualized returns for stocks. From a Kaggle competition, we source performance
data on 3,800 assets over a six-year span; we also have data on relevant news
articles for 30% of the asset-date pairs. We leverage a scoring scheme provided by
the Kaggle competition, which prioritizes stability of performance across time. We
explore loss functions whose minimization best maximizes this scoring function,
finding that cross-entropy performs best. We then explore feed-forward and recur-
rent neural network architectures. Our best performer is two-layer feed-forward
neural net leveraging the market and news data, though sequence models show
much promise.

1 Introduction

It is estimated that 85% of U.S. stock market trades are performed by algorithms (Nelson et al., 2017).
Among investors, there are substantial financial incentives to improve these algorithms such that they
can better identify assets most likely to increase in value. The proliferation of financial news yields
enormous potential predictive value (Soon, 2010) if it can be appropriately digested and featurized.

The New York-based hedge fund Two Sigma, recognizing the value of incorporating these data, has
posted a Kaggle challenge asking contestants to “use the content of news analytics to predict stock
price performance” (Kaggle, 2018). We use the data and scoring function provided for this challenge,
but modify the definition of the training and test set. We also explore algorithms that both do and do
not include features derived from contemporaneous news data.

Our problem is formulated as follows: for each asset-day pair of interest, the input to our algorithm
is a set of covariates related to the stock’s performance (prior returns, trading volume, etc.) and,
optionally, a set of additional covariates summarizing news content related to the stock on the given
day (sentiment, length, etc.). Our goal is then to predict a value in [—1, 1] summarizing our confidence
in the direction of the subsequent ten-day market-residualized return on the asset. A value near 1
signifies high confidence in a positive market-residualized return and a value near -1 signifies high
confidence in a negative market-residualized return. We use a variety of neural network architectures
to accomplish this task.

2 Related work

The problem of predicting stock market movements has substantial precedent in the machine learning
literature. Work from the early 2000s (Huang et al., 2005; Tay and Cao, 2001; Kim, 2003) made
heavy use of support vector machines. This work frequently relied on careful featurization of market
data. For example, Tay and Cao (2001) provided lagged relative difference in price values based on a

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

five-day window. Tay’s approach outperformed a neural network, but lacked the capacity to scale to
wide datasets with less structured features.

More modern approaches have relied on neural networks. Jabin (2014) achieved high accuracy
predicting the Indian stock market using a very simple feed-forward network providing the prior
four days’ returns as separate features. More recently, researchers have more explicitly made use of
the time-series nature of stock returns by fitting sequence models. Chen et al. (2015) constructed a
dataset of daily features like prior closing price and trade volume. They use an LSTM framework to
model the sequential nature of the data, and found that such an approach improved predictions on the
Chinese stock market. Similar approaches were found to be promising for predicting returns in the
Brazilian (Nelson et al., 2017) and U.S. (Di Persio and Honchar, 2016) stock market.

A final series of papers seeks to incorporate data outside the market for the purpose of enhancing
predictions. If properly fit and trained, such models would be expected to outperform because
when “significant events (e.g., a bankruptcy of a global financial firm) [happen] such events would
first appear in the news, not in the past numerical information (e.g., last five days’ stock prices)”
(Yoshihara et al., 2014).

Schumaker and Chen (2009) analyzed the effect of breaking news on extremely narrow stock price
windows, seeking to examine the effect twenty minutes after the news broke. They were able to get
good performance using simple bag-of-words and rules-based approaches to convert text data into
features, but made use of a SVM, rather than a deep net, for prediction. Siah and Myers (2015) fit a
GRU to the Nikkei returns, and instead featurized articles solely based on their sentiment scores.

Yoshihara et al. (2014) take a somewhat more modern approach, fitting an RNN to Japanese stock
price data while making use of relevant news articles on each day. They convert the articles into
one-hot feature vectors for the presence and absence of each word, and then use these features
alongside other market features as inputs to the RNN.

3 Dataset and Features

The Two Sigma Kaggle competition provides two distinct datasets for training. The first is a market
returns database which contains financial market information for 3,800 assets over the period from
2007 to 2016. The dataset contains 4.1 million rows and 16 columns. Each row in this database is
uniquely identified by an asset-date pair. Among the columns are 11 market-based predictors, such as
stock price and trading volume on the date, and market-residualized returns over prior 10 days. The
data also contains market-residualized returns over the subsequent 10 days, which we seek to predict.

The second dataset is a news database, sourced from Thomson Reuters. Each row is a unique news
article. The articles are tagged with the relevant assets (e.g., those that are discussed in the article).
Each row also contains metadata about the article, including scores for sentiment, news novelty, and
relevance to the asset. The database contains 9.3 million rows and 35 columns.

Data was pre-processed in a few key ways. The final two years of the dataset (2015 and 2016) were
chosen as our test set, with the preceding years initially chosen as the training set. Due to CPU
and RAM limitations on Kaggle kernels, reduction in the size of the training set was necessary to
achieve stability. Initial experiments demonstrated that removing the first few years of the training
set actually improved test error. This is hypothesized to be due to the fact that the financial crisis
induced a dramatic dissimilarity between the training and test sets. This resulted in a final training set
containing 1.9 million rows and a final test set containing 900,000 rows.

In experiments including the news predictors, only the numeric covariates were utilized. Features
were derived by joining the datasets by asset and date (i.e. all news articles mentioning an asset on a
given date were joined to the relevant asset-date pair) and aggregating over the articles by computing
the mean, minimum, maximum, and standard deviation of the metrics. This yielded a dataset with 94
total predictors. Approximately 30% of rows had at least one relevant news article.

The training predictors and test predictors were centered. Null values were then filled with zero
(the equivalent of mean-filling prior to normalization). Lastly, the data was scaled to have standard
deviation one. For most of the models, the label we sought to predict was actually the sign of the
market-residualized returns (described in the next section), so these values were also generated in the
pre-processing stage.

Figure 1: Visual representation of how the data is turned into a length n sequence for a sequence
model. We suppose the stock is Apple and the window starts on January 1, 2015

)'
O
a <0> > > E
=
@,
/"< >
AAPL AAPL AAPL AAPL
Y115 1/2/15 1/3/15 1/28/15

Code from public kernels contributed by Bruno G. do Amaral (do Amaral, 2018) and “Dieter” Dieter
(2018) was heavily utilized in writing the pre-processing code.

4 Methods

4.1 Models

We explored three broad classes of models. The first was a simple logistic regression model using all
of our features. This provided a baseline for performance.

The second class of models were feed-forward neural networks. I explored fully connected networks
with either one or two hidden layers. Denote as x; the covariate vector for a single example ¢ in the
training set (where either x; € R for the market data only, or x; € R%* for the news and market
data). For a single hidden layer neural network, the relevant equations are:

o = o (W, +)

ey
=0 (W[Z]agl] + bm)

where o (+) is our activation function (chosen to be the sigmoid), agl] is the value of the hidden layer for

example 4, §J; is the prediction for example 7, and W, W2 1 and b[?! are all trainable parameters.
Parameters were trained via back-propagation. These models are able to flexibly incorporate a large
amount of information, but they do not explicitly incorporate the sequential nature of the data.

The third class of models — sequence models — do incorporate this structure. I specifically explored
Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs), and Long Short-Term Memory
Units (LSTMs). In these models, we take a sliding window of consecutive data points for each asset
and treat this as a single training example. A schematic is provided in Figure 1, supposing Apple
(“AAPL”) is the relevant stock (stock 7) and the window is of length n, starting on January 1, 2015.
We denote the vector corresponding to Apple’s covariates on the m!” day of the sequence as 2™~
The final prediction ¢ corresponds to the label associated with the final date of the window. In
our models, we generate this prediction by taking the final hidden state of the recurrent model and
providing it to one more feed-forward layer. The equations are precisely those provided in Equations
1, with the final hidden state a;-"~ replacing the covariate vector z;.

4.2 Losses

To make sure my results were relevant to the problem at hand, I opted to use the scoring function
provided by the Kaggle competition. Recall that the user generates a prediction 3;; € [—1, 1] for asset
7 at time ¢, representing confidence in the direction of the market-residualized return of the asset over
the subsequent 10 days. For 7, the true residualized return and u,; a binary variable representing
whether that particular asset-day pair is included in evaluation, the scoring proceeds as follows:

e For each day, compute
bt = g GtiTtiUt;
i

e Across days, compute: ~
bt

std(pt)
where std(+) is the standard deviation across days.

SCOre =

@

The denominator penalizes highly variant p, values. This is a sensible strategy in that a hugely
negative p; value could bankrupt a firm before it realized future gains from higher subsequent
p: values. However, this poses a challenge as the score does not decompose into components
corresponding to each example z;. The expectation of the gradient with respect to a randomly
selected sample is also not equal to the true gradient. So methods like stochastic or minibatch gradient
ascent cannot be implemented in this context. Thus, we explore the minimization of several loss
functions to serve as a proxy for maximizing this scoring scheme.

5 Results

5.1 Choosing a Proxy Loss

Per the discussion above, the choice of a “proxy loss function” was treated as a hyperparameter. For
clarity, we will distinguish between the final confidence value 7;; and the value outputted by the
network, which we denote v;;. I chose a simple baseline model — a one-layer neural net with 32
hidden nodes, using market data only as the predictors — and trained it using each of the following
loss functions:

e cross-entropy loss. The final layer of the neural net was modified to output a value oy; € [0, 1]
and the loss was computed as — >, , I(ry; > 0)log(s;) + (1 — I(re; > 0)) log(1 — 94;)
where I(-) is an indicator function and the sum runs over days and assets in the training data.

e hinge loss. In this case, the final layer of the neural net was modified to output a value
0yi € [—1, 1] and the loss was computed as:) ., max (0,1 — I(ry > 0)04)

e squared error loss. In this case, the final layer of the neural net was modified to output a
value ; € R and the loss was computed as: Zi,t(f’ti —74)?

e “score numerator’ loss. In this case, the final layer of the neural net was modified to output
a value 9y; € [—1,1] and the loss was computed as: —) . , 0474
Note that this is the negative of the numerator in the score function

Training was run for 25 epochs with an Adam Optimizer and a learning rate of 0.001. Models were
then evaluated on the set (with predictions being converted to the range [—1, 1] either via clipping or
by a shift and dilation) and the score was calculated according to 2. Results are provided in Table 1

Table 1: Scoring function values on the test set

Cross-Entropy | Hinge | Squared Error | Score Numerator
0.436 0.375 | 0.250 0.395

As cross-entropy performed the best as a proxy loss, it was used for the model selection phase. Note
that this means our final learning algorithm seeks to predict the probability that the market residualized
return 7y; is greater than 0. This final probability v;; can easily be converted into confidence values
Ut € [—1,1] via the transformation:

Jti = 2+ (0 — 0.5)
5.2 Choosing a Model
All models were trained with an Adam Optimizer used to minimize the cross-entropy loss function.

Mini-batches contained 64 data points apiece. Twenty-five training epochs were used, and training
cross-entropy losses were manually checked for approximate convergence.

Some modest tuning was done on the number of hidden nodes (between 32, 64, and 128), the learning
rate (between 0.01 and 0.001, the sequence length for the sequence models (between 10 and 50),
and the dropout parameter (between none, 0.2 and 0.5). A learning rate of 0.001 was found to work
best in all cases, and length 50 sequences always outperformed length 10 sequences. For brevity, we
provide below only a selection of the best-performing models of each type. I acknowledge that the
reported test scores may be biased upward because the tuning was done directly on the test set rather
than on a development set.

Results can be found in Table 2. The best performing model, when measured by the score on the test
set, is a deep neural network with two hidden layers, making use of the market and news features.
With proper regularization, this model appears capable of gaining additional insights from the news
content.

Two sequence models, trained using market features only, are close behind in test set performance.
It’s notable that GRUs and LSTMs do appear to be learning additional structure from the time series
representation of the data. Their dramatic outperformance of the basic RNN makes sense, as we find
that the longer (length 50) sequences yield better insights. Notably, these models also achieve much
better training scores than the feed-forward network. It’s plausible that more aggressive regularization
schemes could thus boost their test scores to outperform a feed-forward network.

Note that instability and memory limitations on Kaggle kernels prevented training a sequence model
making use of the news features, but these would also be expected to outperform.

We note also that the 1-hidden-layer feed-forward neural net wasn’t able to achieve a performance
gain from the addition of the news features. Though several hyperparameter values were tried, it
would require more careful tuning to actually make use of these features effectively in a simple
feed-forward neural network. The relative under-population of these features may be a culprit.

Lastly, note that all of these methods outperform a simple logistic regression, indicating that deep
learning approaches are able to identify more meaningful structure in the data.

Table 2: Summary and performance measures of best-performing models of each type

Num Hidden Sequence | Training | Test
Model Features Nodes Dropout Length Score Score
2-hidden-layer feed- |,) 128/16 0.2 N/A 0.594 0.507
forward neural net
GRU Marke: 32 0.2 50 1840 | 0.488
features only
LSTM Market 32 0.2 50 1770 | 0.483
features only
1-hidden-layer feed- | Market 3 Kons 50 0675 0.482
forward neural net features only
RNN Market 32 None | 50 1.086 | 0.448
features only
Lideendayer feeds | gy 3 None | N/A 0.745 | 0430
forward neural net
Logistic regression | All N/A N/A N/A 0.383 0.368

6 Future Work

Our best performing algorithm was a feed-forward neural network, but the results strongly indicate
that a properly designed sequence model, incorporating the news features, would outperform. The
stability of Kaggle kernels was a major hindrance throughout this project and prevented both inclusion
of the news features in a sequence model and extensive exploration of regularization methods for the
sequence models. With better computing resources, this is an obvious next direction.

The under-population of the news features also appeared to pose a challenge to proper model training.
With more time, I'd like to explore an ensemble-type approach with separate models fit to stock-date
pairs that do or do not have relevant contemporaneous news stories. I’d also be interested to directly
leverage the headlines of the articles by making use of the words’ associated GloVe vectors.

Code

I have made all my kernels public and they can be accessed at https://www.kaggle.com/
rosenman/kernels.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from
tensorflow.org.

Chen, K., Zhou, Y., and Dai, F. (2015). A Istm-based method for stock returns prediction: A case
study of china stock market. In Big Data (Big Data), 2015 IEEE International Conference on,
pages 2823-2824. IEEE.

Di Persio, L. and Honchar, O. (2016). Artificial neural networks approach to the forecast of stock
market price movements. International Journal of Economics and Management Systems, 1.

Dieter (2018). Market data nn baseline.
do Amaral, B. G. (2018). A simple model - using the market and news data.

Huang, W., Nakamori, Y., and Wang, S.-Y. (2005). Forecasting stock market movement direction
with support vector machine. Computers & Operations Research, 32(10):2513-2522.

Jabin, S. (2014). Stock market prediction using feed-forward artificial neural network. growth, 99(9).
Kaggle (2018). Two sigma: Using news to predict stock movements.

Kim, K.-j. (2003). Financial time series forecasting using support vector machines. Neurocomputing,
55(1-2):307-319.

Nelson, D. M., Pereira, A. C., and de Oliveira, R. A. (2017). Stock market’s price movement
prediction with Istm neural networks. In Neural Networks (IJCNN), 2017 International Joint
Conference on, pages 1419-1426. IEEE.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830.

Schumaker, R. P. and Chen, H. (2009). Textual analysis of stock market prediction using breaking
financial news: The azfin text system. ACM Transactions on Information Systems (TOIS), 27(2):12.

Siah, K. W. and Myers, P. (2015). Stock market prediction through technical and public sentiment
analysis.

Soon, Y. C. (2010). News which moves the market: Assessing the impact of published financial news
on the stock market.

Tay, F. E. and Cao, L. (2001). Application of support vector machines in financial time series
forecasting. omega, 29(4):309-317.

Yoshihara, A., Fujikawa, K., Seki, K., and Uehara, K. (2014). Predicting stock market trends by
recurrent deep neural networks. In Pacific rim international conference on artificial intelligence,
pages 759-769. Springer.

