Confirmation Generation for Almond Virtual Assistant

Silei Xu
SUID: silei
Computer Science Department
Stanford University

Background

Virtual assistants are built to scale with a large open-world
repository of skills. For example, the Amazon Alexa virtual
has 40,000 skills and Google Home has 1 million functions.
They accept natural language utterances as intents and dis-
patches them to the named services.

The open-source Almond virtual assistant (Campagna et
al. 2017) lets user issue compound commands in natural
language and automatically translates them to programs in
a formal language called ThingTalk. Compound commands
combine APIs from an open-source, crowdsourced Thingpe-
dia currently comprising 64 devices and services, with 212
functions. Fig. 1 shows how a natural-language sentence can
be translated into a ThingTalk program, using the set of ser-
vices in Thingpedia.

Problem

Whereas today’s commercial virtual assistants can only un-
derstand skills that are hard-coded, future virtual assistants
will let users specify new commands that compose skills
from different service providers. Almond, as a pioneer in
this area, translates natural language to a formal language
called ThingTalk. ThingTalk can compose compound com-
mands by combining different APIs from a repository called
Thingpedia, and applying filters and parameter passing on
top. For example, as shown in Figure 1, the virtual assistant
first retrieve a cat picture from The Cat API, and then post
the returned result to Facebook.

The increase of complexity and expressiveness of vir-
tual assistant’s capability also increases the complexity of
parsing. Sometimes two commands with different seman-
tics may be just too similar in natural language to distin-
guish without reading user’s mind. Further, unlike question-
answering problems, virtual assistant commands make side
effect to the world, e.g., posting on user’s Facebook. If an
mistake is made in the question-answering problem, user can
simply try again. While if a virtual assistant makes an mis-
take and executes the wrong command, it might cause some
non-reversible effect. Thus, a confirmation is needed before
the command is executed.

© 2018, Association for the Advancement of Artificial Intelli-
gence (wWww.aaai.org). All rights reserved.
Github: https://github.com/rayslxu/tt2nl

Thingpedia

User input ® 3K

Get a cat picture and post | Dyl o [L
it on Facebook with | -°::22* ws J [aN \’ 0

caption “Funny cat!” 8 @ e F
PHILIPS HRKLHN
an\“

¥
now => @com.thecatapi.get()
ThingTalk | => @com.facebook.post_picture(picture_url =
picture_url, caption = "Funny cat!");

Alice
-«
Funny cat!

Execution
result

Figure 1: An example of translating and executing com-
pound virtual assistant commands.

In this project, I will try to solve the reverse problem of
the common virtual assistant parsing problem: translate the
formal language and generate a natural language sentence
for confirmation.

Dataset
ThingTalk Programs

ThingTalk programs have a single control construct, with up
to three clauses, each calling an API in Thingpedia:

when = get = do

WHEN specifies the time or event that triggers the operation,
GET (optional) retrieves data and DO performs a side effect.
WHEN defaults to now which indicates the execution should
take place once, now; the keyword monitor indicates that
the program reacts to changes in the data. DO defaults to
notify, meaning that the result will be returned to the user.
One or more parameters can be passed between the func-
tions. Results can be filtered with one or more predicates

Natural language

Program

my Dropbox files

@com.dropbox.list_folder ()

my Dropbox files in
alphabetical order

@com.dropbox_list_folder(order_by
= name_increasing)

my Dropbox files that
changed most recently

@com.dropbox_list_folder(order_by
= modified_time_decreasing)

my Dropbox files that
changed this week

@com.dropbox_list_folder(order_-by =
modified_time_decreasing) filter
modified_time > start_of_week

my Dropbox files
larger than $file_size

@com.dropbox.list_folder ()
filter file_size > $file_size

files in my Dropbox
folder $folder

@com.dropbox_list_folder(folder_name
= $folder)

Get a cat picture

Post a picture on Facebook
with caption “Funny cat!”

Get a cat picture and post a picture on
Facebook with caption “Funny cat!”
with picture url equal to picture url

I
| Refined grammar after iterations I

@

when I modify a file in|monitor @com.dropbox.list_folder()
Dropbox
when I create a file in|monitor @com.dropbox.list_folder()
Dropbox on new file_name

Table 1: Examples of developer-supplied annotations for the
@com.dropbox.list_folder function in Thingpedia.

based on equality, comparison, or containment.

Contributors to Thingpedia are responsible for supplying
representative natural-language utterances for each function.
A single Thingpedia function can be used for different pur-
poses depending on the parameters and filters applied to it.
For example, the @com.dropbox.list_folder function can be
used to list files in different orders, filter on size or modi-
fication time, and react to file creation and modification (Ta-
ble 1).

Synthetic Programs

The number of ThingTalk programs grows quickly with the
number of functions, because different parameters, filters,
operators can be used for a single function and multiple
functions can be combined with different parameter passing.

To cover the program space, we generated 65,349 differ-
ent programs by randomly applying the ThingTalk grammar
on Thingpedia functions. As shown in the first column of Ta-
ble 2, there are 238 possible primitive programs with no in-
put parameters: there are 57 DO functions, the 66 GET func-
tions can be used in the WHEN or GET clause, and some GET
functions have several variants to monitor different param-
eters. We combine primitives to derive 22,326 compound
programs in which only constant parameters are used. We
add parameter passing and filters by sampling them to cre-
ate more complex programs.

Natural Language Dataset

The ThingTalk dataset consists of three components (Ta-
ble 2). The Synthetic, consisting of 573,878 sentences, is
constructed by combining the natural language utterances of
functions provided by the developers for each program gen-
erated. The utterances are composed via a set of templates,
consisting of 56 rules for the main WHEN-GET-DO construct
and 27 rules for filters, to produce reasonably natural sen-
tences (Fig. 2(a), (b)). To further increase the lexical variety
of the sentences, we randomly substitute some of the words

Get a cat picture and Post a cat picture on

post it on Facebook with Facebook with caption eee (b
caption “Funny cat!” “Funny cat!”

L |

I 1
Add “Funny cat!” as a Post to facebook a cat
caption to a random cat photo picture with caption eee ()
and post it to Facebook “Funny cat!”

Figure 2: Natural language collection flow

in the generated sentences using PPDB (Ganitkevitch, Van
Durme, and Callison-Burch 2013).

To obtain more natural and diverse sentences, we cre-
ate the Paraphrase component. We sample 6,200 sentences
from the Synthetic and ask Mechanical Turk workers to
paraphrase them (Fig. 2(b)). For each sampled sentence, we
ask 3 workers to provide 2 paraphrases each. Only workers
with 99% approval rate are employed, and the paraphrases
are accepted only if three other workers agree that the origi-
nal meaning is retained. We reject sentences automatically if
constants and named entities are removed. We collect 24,566
paraphrase sentences over 3,410 programs. This set includes
2,139 unique words, compared to just 815 in the Synthetic
set.

Splitting to Train, Dev, and Test Set

The synthetic sentences are generated by combining natu-
ral language utterances with fixed templates, which turn out
to be clunky and hard to understand in a lot of cases. Thus
1000 sentences are randomly sampled from the paraphrase
set for the dev and test set, respectively. The rest including
the entire synthetic set will be used for training.

Seq2Seq Model

The model is based on a sequence-to-sequence neural net-
work with attention. The ThingTalk is encoded using word
embeddings projected onto a low-dimensional space and
passed into a bidirectional recurrent neural network. We then
concatenate the forward and backward hidden layers to get
the final hidden states.

The encoding is then passed to a recurrent decoder. Atten-
tion proposed in (Luong, Pham, and Manning 2015) is used.
The model greedily takes the action with the highest score,
and feeds its embedding back into the decoder at the next
step.

. Synthetic Paraphrase

Complexity

Programs Sentences | Programs Sentences
Primitives 238 15,166 96 1,860
+1 parameter 674 51,446 164 2,283
+ > 2 parameters 902 6,822 114 899
+1 filter 11,592 158,835 1,378 9,600
+ > 2 filters 3,317 23,127 20 147
Total primitives 16,723 255,396 1,772 14,789
Compounds 22,326 102,449 851 5,369
+ parameter passing 6,068 118,021 121 722
+1 filter 15,039 66,067 555 3,117
+ > 2 filters 2,944 7,987 86 431
+ filter & parameter passing 2,249 23,958 25 138
Total compounds 48,626 318,482 1,638 9,777
Total 65,349 573,878 3,410 24,566

Table 2: Characteristics of the ThingTalk Dataset. Primitives refer to commands that only use one API, compounds use two.
Filters are predicates applied to the result of an API call.

A masked cross-entropy loss is used to train the model. A
BLEU score is calculated to evaluate the performance of the

model. If the BLEU score stops improving for 10 epochs, —— learning rate: 0.1
the training early stops.] learning rate: 0.01
6 —— learning rate: 0.001

Both the encoder and the decoder use Adam optimizer to
speed up the training.

Experiments

The model is implemented using PyTorch framework with
learning rate 0.01, batch size 128, and 64 hidden units.
The code can be found at https://github.com/
rayslxu/tt2nl. To tune the hyperparameters, a set of
experiments is conducted to evaluate the performance un-
der different settings. In the experiments, we trimmed the . - - e = = =
dataset to a subset containing only sentences shorter than 10 # epochs

tokens. Since the sentences are relative short, we only con-
sider unigrams and bigrams when calculating BLEU score
and method 7 introduced in (Chen and Cherry 2014) is used
as the smoothing function as it correlates better with human
judgment.

We first evaluate how different learning rate affect the
training. Figure 3 and 4 depict the masked entropy loss and
BLEU score within the first 300 epochs of training, respec-
tively. With learning rate 0.1, the loss function fails to con-

masked entropy loss
-~

Figure 3: Masked entropy loss with different learning rate

verge and the BLEU score remains low even though the 0.5

loss decreases. Training with learning rate 0.01 and 0.001 e e g
both gives good results while the former reaches the optimal g% learning rate: 0.01
within fewer epochs. Thus, we choose 0.01 as the default Tl — [eaimingfate; 01001

learning rate.

We then evaluate how different number of hidden units
affect the training. The results are shown in Figure 3 and
4. The training loss goes down to around 2 for all 4 cases.
As expected, the more hidden units, the fewer epochs are 0.0l ; ; ; ; ; ;
needed to reach the optimal. However, with the same loss, 0 %0 100 #elpsuochs 200 20 300
the BLEU scores with different number of hidden units vary.
And even the loss function remains roughly the same, i.e.,
only decreases by around 0.01 every epoch, the BLEU score

0.2

0.19

Figure 4: BLEU score with different learning rate

—— # hidden units: 32
hidden units: 64

—— # hidden units: 128

—— # hidden units: 256

masked entropy loss

0 50 100 150 200 250 300
epochs

Figure 5: Masked entropy loss with different number of hid-
den units

0.7 9

0.6 9

0.51

0.2+ —— # hidden units: 32
hidden units: 64
—— # hidden units: 128
011 —— # hidden units: 256
0 50 100 150 200 250 300
epochs

Figure 6: BLEU score with different number of hidden units

still improves a lot in lot of cases. And as expected, the
model overfits when the size of the network goes bigger. We
choose 64 as the default number of hidden units.

In the following, we show some of the example confirma-
tion sentences generated by the model. We observe that the
model succeeds to generate most part of the sentence, but it
fails to learn to stop: it append random tokens after it gener-
ates the right sentences. A penalty based on repeating tokens
and sentence length were added to the model, but it still does
not solve the problem. I think there are still bugs in either the
loss function or the padding process and this will be the next
thing to solve.

ThingTalk:
= location:current_location = notify

Ground Truth: show me the distance of uber to here

Prediction: show me the distance of uber to here here here

ThingTalk: now = @tumblr-blog.post_text
Ground Truth: i desire to make a tumblr blog post
Prediction: i desire to make a tumblr blog post compost blog

now = @com.uber.time_estimate param:start:Location

Conclusion

In this project, I started from scratch and put up a basic
seq2seq model to translate ThingTalk program to natural
language in order to provide confirmation for Almond vir-
tual assistant. The model uses a bidirectional GRU for en-
coder and the attention mechanism proposed in () in de-
coder. The implementation is still unfinished and buggy, and
the model has not been trained on the full dataset. However,
it already generates some confirmation close to the ground
truth. It shows the proposed model is promising to solve the
problem.

References
[Campagna et al. 2017] Campagna, G.; Ramesh, R.; Xu, S.;
Fischer, M.; and Lam, M. S. 2017. Almond: The archi-
tecture of an open, crowdsourced, privacy-preserving, pro-
grammable virtual assistant. In Proceedings of the 26th
International Conference on World Wide Web - WWW 17,
341-350. New York, New York, USA: ACM Press.

[Chen and Cherry 2014] Chen, B., and Cherry, C. 2014.
A systematic comparison of smoothing techniques for
sentence-level bleu. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, 362-367.

[Ganitkevitch, Van Durme, and Callison-Burch 2013]
Ganitkevitch, J.; Van Durme, B.; and Callison-Burch, C.
2013. PPDB: The paraphrase database. In Proceedings of
NAACL-HLT, 758-764. Atlanta, Georgia: Association for
Computational Linguistics.

[Luong, Pham, and Manning 2015] Luong, M.-T.; Pham, H.;
and Manning, C. D. 2015. Effective approaches to
attention-based neural machine translation. arXiv preprint
arXiv:1508.04025.

