Clothing Texture Synthesis using CycleGAN

MIGUEL FERRER AVILA (MFERRERA)
JIHOON "ANDY" KIM (JKIM4223)

Github Link:
https://github.com/JihoonAndyKim/CS230-Final-Project

1 MOTIVATION AND PROBLEM STATEMENT

In recent years, the availability of large amounts of data, a
surge in computational power thanks to scalable and parallel
systems, and more efficient algorithms have driven the explo-
sive increase of machine learning applications in a variety of
fields. Interestingly, one of the areas impacted is the fashion
industry, with applications such as attribute and category
matching ([Z. Liu 2016]) and deep learning recommendation
systems ([S. Zhang 2018]).

Simultaneously, the advent of generative adversarial net-
works has allowed style synthesis and generation to be easily
carried out by machine learning models. A subset of this al-
gorithm is the CycleGAN architecture proposed by Zhu et
al. ([J. Zhu 2017]), which performs unpaired image-to-image
translation. In the present work, we propose the following
question: Can we use the CycleGAN architecture to generate
novel and new clothing designs? In particular, can we take a
style domain, such as leather clothing, and translate it into
another domain, such as denim clothing?

2 LITERATURE AND BACKGROUND

Before delving into the details of the network architecture
and our model, we give some insight into the background of
our problem.

Date et al. proposed a method to perform paired image
clothing synthesis [P. Date 2017]. They trained a convolu-
tional neural network using VGG-19 weights, along with
content extraction from labels to generate clothing. However,
we note that this training regime requires labeled paired im-
ages, which is not applicable to our problem of translating
images between the domains of leather and denim clothing.

Instead of using CNN, S. Zhu et al. [S. Zhu 2017] had a
slighly different approach by using a two-stage GAN frame-
work to sythesize clothing styles from descriptions. The
framework takes in descriptions, renders a segmentation
map in the first stage and then uses this mapping with a
DCGAN to produce an image with the parameters described.
However, while this uses a generative model to create a new
design for fashion, it still requires paired training results as
well as performing a different style of problem (text-to-image
generation rather than image-to-image translation).

Zhu et al. ([J. Zhu 2017]) proposed a method to perform un-
paired image to image translation (translating from domain
A to domain B) using a new architecture that performs train-
ing without the use of paired training data. This is enforced
by a loss formulation that includes cyclic loss, i.e. an image
from domain A translated into domain B and back to domain
A should be the identical to the starting image. To further
support this formulation as applicable to our task, Chu. et al
[C. Chu 2017] used CycleGANS in their work to reconstruct
aerial images from basic maps and vice versa by performing
an image-to-image translation between the two domains. For
this reason, we adopt the CycleGAN architecture as the most
qualified model to perform our unpaired image-to-image
translation between leather and denim clothing.

3 DATASET

While the ImageNet database presents a wealth of images
for deep learning, a small subset of these images are actually
fashion related and an even smaller subset are usable for
domain transfer (i.e. well-lit images with an article of clothing
in the foreground), making it a poor choice for this domain
transfer problem. Instead, we use the DeepFashion database
to procure images for training ([Z. Liu 2016]).

The pre-curated database contains 800,000 images of arti-
cles of clothing segregated by fabric, texture, shape and style.
Each image is approximately 300 X 300 pixels with three chan-
nels for color. What makes this dataset much more viable for
our problem is that the majority of the articles of clothing
appear clearly in the foreground, while a white background
helps to reduce the amount of noise. For our problem, we
specify two datasets corresponding to the two domains be-
tween which we wish to translate: leather clothing and denim
clothing.

3.1 Domain A: Leather Clothing

The leather dataset contains 646 images of leather clothing,
with 548 used for training and 98 for testing. 75% of the
dataset in both train and test sets is composed of upper-body
articles of clothing, and the remaining is lower-body clothing.
In addition, approximately 70% of our dataset are images
of clothing without a person present in the image, while
the rest are images of models wearing leather clothing. We
discuss the impact of this imbalance in the results section.
To combat the imbalance, we added additional samples of
images with models at a later time to produce better training
results (around 50 images).

3.2 Domain B: Denim Clothing

The denim dataset includes 711 images of denim clothing
with 622 for training and 91 for testing. Approximately 75%
of the dataset in both train and test sets is composed of lower-
body articles of clothing with the remaining for upper-body
clothing. Nearly 90% of our dataset are images of clothing
without a person present in the image. Similarly, we added
additional samples of images with models to this dataset as
well (also around 50 images).

3.3 Data Processing

As per the training regime for CycleGAN proposed by Zhu et
al ([J. Zhu 2017])), we resize all images to a square 286 X 286
image (since larger images become computationally expen-
sive), perform random cropping to a 256 X 256 image, and
randomly flip the image horizontally as well as rotate the
images. This is to add stochasticity to our model, as well as
to augment our dataset so that we do not overfit on the input
images. In addition, we center and normalize the pixel values
with a mean of 0.5 and a standard deviation of 0.5 so that we
start with values around 0.5 rather than ranging from 0 to
256. Furthermore, our architecture is highly dependant on
the input data format, as we explain in the next section.

4 METHODS

The architecture and details of our model follows the Cy-
cleGAN implementation as described by Zhu et al. This is
outlined in Figure 1. We train over datasets A and B with two
generators, G and F, and two discriminators, D4 and Dp. Dp
helps G translate images from domain A to be indistinguish-
able to those in domain B, while D 4 helps F translate images
from domain B to be indistinguishable to those in domain
A. Since we are experimenting with GAN:Ss, it is difficult to
describe a baseline model; thus, we provide an different ar-
chitectures we are using for training. First we describe the
losses we use to train our model.

/ mr _’\ Gener-‘ated

Disc A InputA ”f .| DiscB

Cycle A .

|
Output [0,1] m «—| GenB /
o,

Fig. 1. Architecture of the CycleGAN model. Here generators G
and F are Gen A and Gen B respectively and discriminators D4 and
Dgp are Disc A and Disc B respectively.

4.1 Loss Formulation

We employ a loss metric composed of the sum of the adver-
sarial loss from each pair of generator and discriminator with
the cyclic loss:

Lrotal = L6aN(G,Dp, A, B)+ LGaN(F,Da, A, B)+ ALcyclic

The Lgan is defined as follows

L5an(G, Dp, B, A) = E[log(Dp(b))] + E[log(1 — Dp(G(a)))]
+E[log(Dp(G(a)))]

where the first two terms are related to discriminator loss
(it is the binary cross entropy loss to distinguish the fake
images from the real images), and the last term is related
to the generator loss (we want to trick the discriminator to
mis-identify an image, or produce a "0").

The cyclic loss Lcyciic is defined as

Leyetic = Ellx = F(G(x))[|: + Elly - GFE@))I

where we take an image and feed it to both generators, hoping
to recover the same image. Ultimately, our complete objective
function to recover the optimal image generators is

(G*,F*) = argmin max Lroql
G.F Da,Dg

This is solved with backpropagation through the GANs and
with ADAM optimizers.

4.2 Network Architecture

3 Encoding layers 3 Decoding layers 5 Convolutional layers

— e —
Input
(256x256x3)

6/9 ResNetblocks
(64x64x256)

— Output nput Decision

Inp:
(256x256x3) (256x256x3) [0,1]

Fig. 2. Left: Architecture of the Generator. Right: Architecture of
the Discriminator

The general network architecture we use is the same as
that cited by Zhu et al; however, we made several changes
to the generator. The architecture for both generator and
discriminator are seen in Figure 2. Please reference the code
to see the exact hyperparameters used.

4.2.1 Generator. Our generator takes in an image that is
cropped to 256256 with 3 channels as per the data processing
step, and feeds it sequentially to the following layers.

Encoding. Three convolutional layers with ReLU activation
and batch normalization. The layers bump up our images
from 3 channels to 256 channels. The hyperparameters (ker-
nel size, stride and padding) chosen for this model follow
from the architecture described by Zhu et al.

Translation. This block of our generator is composed of
ResNet blocks with skip connections between the i and i + 2
layers with Batch-norm and ReLU activation. We preserve
the dimensions of each input and output of the blocks. This
is where we differentiate our network architectures, as we
take on multiple models with ResNet-6 and ResNet-9 (Each
number corresponding to the number of ResNet blocks used
in the model).

Decoding. Two deconvolutional layers with ReLU activa-
tion, and a final deconvolutional layer with tanh activation
boosting back to the original dimensions in addition to Batch-
norm on all of the inputs to the layers. This mirrors the
encoding step.

Once the image is fed through the generator, the output
should be an image in the new domain.

4.2.2 Discriminator. Our discriminator is composed of
five convolutional layers (different from the PatchGAN pro-
posed by Zhu et al) with four layers with Leaky ReLU activa-
tion boosting from 3 channels to 512 channels with a final
convolutional layer to take all 512 channels and produce a
one dimensional output. The image is fed through these five
layers and to obtain a binary output that signals whether
the image is fake or not. This was inspired by a blog post
by Bansal ([H. Bansal 2017]). We performed preliminary ex-
periments by varying the number of layers (adding another
fully connected network and removing one of the convolu-
tional layers in between) as well as different unit sizes for
each layer, but noticed no appreciable difference between
the qualitative output as well as between the losses of the
training. Therefore, for this project, we adhere to the model
proposed by Bansal.

4.3 Training Regime

For the training, we use the hyperparameters used by Zhu et
al. as a starting point. Most importantly, for our loss formu-
lation, we chose a A = 10 (Since we want to penalize cyclic
loss more) so that we weight the cycle loss much more than
the adversarial loss. The optimizers we used are ADAM opti-
mizers for backprop (f; = 0.5, f2 = 0.999), a learning rate of
0.002, a leakyReLU coefficient of 0.2, a mini-batch size of 10
and 250 epochs for training. For the backpropagation, we use
gradient clipping to ensure that our training regime stays on
track.

In addition, we modify the loss formulation for training in
that we perform least squares loss for L an instead of the log
likelihood since this provides stable training (faster training
at first, but slower training at later epochs since our Dp(G(Z))
value will be close to 0 and we want a non-saturating cost).

After training several different models with randomized
hyperparameters and using the full objective loss function
as our metric to evaluate our different models, we note that
still those we had picked initially performed with the least
loss (Objective loss of 2.86 compared to 3.5 seen with other

architectures). However, we note the best training results
were those trained with more epochs.

5 RESULTS AND ANALYSIS

Fig. 3. Image-to-Image Translation from leather to denim with class
imbalance

For this section, we compare two of the models that we
tested, ResNet-6 and ResNet-9 (described in the Method sec-
tion) and show the results from one of the models we chose
between the two.

5.1 Qualitative Results

Initially, we started with two domains: handbags and dresses.
However, training showed unpromising results, as the gener-
ated images simply appeared as color-shifted versions of the
original image. This is likely due to the high variance within
the domains themselves (many of the handbags look different
from each other), and solving it would require much larger
training sets. Therefore, we narrowed the focus to a transla-
tion between leather clothing and denim clothing. Generated
images are shown from this task in Figure 4 after training the
model given the regime described in the previous section.

Furthermore, we noticed that the translation from leather
to denim resulted in a blurry and poor result as shown in
Figure 3. This was due to dataset imbalance, as we had many
more examples of humans in the domain for leather clothing
than in the domain of denim clothing. Additionally, since
facial features are rather complex, we require many training
examples to produce a robust result. In consequence, we spent
some time adding images to the dataset that included more
human figures as a reference (Approximately 50 images for
each domain) to reduce the overfitting on the non-model
images. Qualitatively, we see a high-fidelity image with little
loss on the facial structure of the original image as shown in
the leftmost column of Figure 4.

Between the ResNet-6 and ResNet-9 architectures, there
were no noticeable qualitative difference even after running
the models for over 200 epochs during training. Therefore, we
defer the judgment between the models with the quantitative
results.

5.2 Quantitative Results

Since we do not have a ground truth for many of our outputs,
itis difficult to quantify what a "good" output is. Thus, instead

Input

Output

Cycle

Fig. 4. Image-to-Image Translation output on our validation set. Top row shows original image, second row show generated image and third

row shows the recovered image

of using typical metrics such as MSE loss, we evaluate our
model based on the metric used to optimize the algorithm -
the total objective loss.

Comparison between the ResNet-6 and ResNet-9 architec-
tures. We run two different models: ResNet-6 and ResNet-9,
which produced the following objective function plots, as
described in the loss formulation section.

—— - ResNet-9
—— ResNet-6

Objective Loss

Fig. 5. The epoch number is plotted on the x axis and the objective
function is plotted on the y-axis.

While the general trend of the full objective function loss is
correctly decreasing, the plots shown in Figure 5 tell us there
is room to further decrease the loss. This can be done with ad-
ditional training over more epochs, or increasing the training
set size (Split with less examples in the test set and include
more for training). Another important point to note is that

the ResNet-9 architecture (L1otal, average : 2.86) performs
better in general than the ResNet-6 (Lr1otal,average : 3-22) ar-
chitecture. This shows that a more complex model performs
better on our training set. Hence, we move towards a more
Panda approach in that we curate the model with a ResNet-9
architecture moving forward—since training CycleGAN is
expensive and performing additional model search for our
models is a computationally prohibitive task.

— Denim to leather
25 — Leather to denim

Denim to leather
—— Leather to denim

°
®

° °
2 a
Cycle Loss

Generator Loss

°
o

Fig. 6. Left - Generator Loss. Right - Cyclic Loss. The epoch num-
ber is plotted on the x axis and the loss is plotted on the y axis.

Cyclic, Generator and Discriminator Loss. In this section,
we pull apart the adversarial loss to formulate both generator
and discriminator loss. Figure 6 shows the cycle and genera-
tor losses respectively. Since we heavily weight the cyclic loss
over the total objective by setting our loss function hyperpa-
rameter A = 10, we see better minimization of the cyclic loss
over epochs than that of the generator. After 250 epochs, we
can see that the cyclic loss converges close to 0, which is to
be expected. Comparing the generator loss in Figure 6 to the
discriminator loss in Figure 7, we note that the generator loss
does not decrease much. This is unsurprising, as the minimax
game performed with the objective loss function comes to
saturation eventually, when we create a discriminator that is
not easily fooled by the generator.

0.9 1 —— Denim to leather
——— Leather to denim
0.8 4
0.7 1
0.6 1
0.5 1

0.4 1

Discriminator Loss

0.3 1

0.2 1

0141 - v T T T
0 50 100 150 200 250
Epoch

Fig. 7. Discriminator loss plot. The epoch number is plotted on the
x axis and the loss is plotted on the y-axis.

A more interesting feature in the plot shown in Figure 6
is the bulge in loss between 100 and 150 epochs, which is
also noticeable in the discriminator loss in Figure 7. This is
because around 100 epochs, either the generator or discrimi-
nator was significantly stronger than the other at performing
its assigned task of minimizing its adversarial loss, driving
the loss of the other network high. However, after training
successfully for 100 more epochs, we observe a sort of conver-
gence between the discriminator (with loss hovering around
0.2) and the generator (with loss around 0.4). We also note
this artifact of instability in Figure 5 around 110 epochs.

Since we see that all the losses of our minimax game con-
verge, additional training beyond the 250 epochs performed
would likely not improve the results. Therefore, we would
need to spend more time on curating additional data for train-
ing or trying out different model architectures.

6 CONCLUSIONS AND FURTHER WORK

As explained in the Results section, we show that our loss
curves for discriminator, generator and cyclic loss converge
to appropriate values expected with a minimax objective
function, hinting that additional training would likely not
offer much difference. As seen in Figure 4, we generate images
that illustrate, qualitatively, that our model works well in
performing the task we aimed to solve: translating images
between leather and denim clothing. We also demonstrated
that, for our model, the ResNet-9 architecture performed
better than the ResNet-6 architecture as well as using the
hyperparameters outlined by Zhu et al. [J. Zhu 2017].

We adapted what we learned from the milestone and have
several goals moving forward with the project:

(1) Inception Scoring: Instead of using the full objective
loss, we would like to try using inception scoring as
a metric for our CycleGAN, which would give us a
better idea of the image diversity and the quality of
the images (several of our images demonstrate blurring
due to artifacts from training).

(2) More Models: Try more models other than ResNet-6
or ResNet-9 such as ResNet-50, DenseNet or UNet. Zhu
et al. ([J. Zhu 2017]) mentions UNet works well.

(3) Change discriminator: We have not yet experimented
modifying the discriminator, except for smaller side
experiments by changing the number of layers and
sizes. Perhaps changing the formulation will allow us
generate higher fidelity images by incorporating the
inception scoring metric above and/or using some of
dense net architectures we reviewed in class.

(4) Increasing training size further: Although much
time was spent curating the data and retrieving sample
images to balance our training set, we showed that after
250 epochs, training was saturated and the loss curves
were stagnant. Therefore, adding even more training
data would aid our model achieving more quality re-
sults without overfitting.

7 CONTRIBUTIONS

Both team members worked on performing the background
literature analysis, as well as interpreting the quantitative
and qualitative results presented here. In addition, both team
members worked on the project report, poster and presenta-
tion equally.

Miguel worked on coding up the CycleGAN implementa-
tion in PyTorch, as well as setting up and performing multi-
GPU support with our codebase for fast training. He also
worked on training the images on the compute node to pro-
duce the results in the paper.

Andy worked on data fetching and processing including
scraping, cleaning and preparing the images from DeepFash-
ion to be fed into the model. He also worked on training the
model by curating the data and adding data augmentation
in the codebase as well as performing additional coding and
debugging work.

REFERENCES

M. Sandler C. Chu, A. Zhmoginov. 2017. CycleGAN, a Master of Steganog-
raphy. 31st Conference on Neural Information Processing Systems (NIPS
2017) (December 2017).

A. Rathore H. Bansal. 2017. https://hardikbansal.github.io/CycleGANBlog/.
(2017).

P.Isola A. Efros J. Zhu, T. Park. 2017. Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks. IEEE (2017).

T. Oates P. Date, A. Ganesan. 2017. Fashioning with Networks: Neural Style
Transfer to Design Clothes. ML4Fashion (2017).

A.SunY. Tay S. Zhang, L. Yao. 2018. Deep Learning based Recommender
System: A Survey and New Perspectives. Comput. Surveys 1, 1 (2018),
1-35.

R. Urtasun D. Lin C. C. Loy S. Zhu, S. Fidler. 2017. Be Your Own Prada:
Fashion Synthesis with Structural Coherence. International Conference
on Computer Vision (ICCV) (2017).

P. Luo X. Wang X. Tang Z. Liu, S. Yan. 2016. DeepFashion: Powering Robust
Clothes Recognition and Retrieval with Rich Annotations. European
Conference on Computer Vision (ECCV) (October 2016).

