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Abstract

Cryo-electron tomography is a powerful technique by which 3-dimensional
cellular features can be observed in nanometer resolution. Accurate and fast
annotation of features within tomograms are essential and demanding in
current research field. Here we propose to apply deep learning to tomography
annotation. Our preliminary results show that deep learning offers an
relative accurate annotation for several cellular features including
microtubule, double membrane and single membrane.

1 Introduction.

Electron cryo-tomography(cryo-ET) is a popular tomography technique used by
biologists in recent years to determine nanometer resolution 3-D sub-cellular
structures. This technique is normally featured with imaging a rotating sample for
120 degrees, generating a series of 2D tilt images that can be combined to produce
a 3D volume. The main method researchers use in reconstructing the 3D volume of
the sample starts with manually annotating various features such as cytoskeletal
filaments, cell wall elements and internal compartments in each 2D image slice.
Due to the diversity and crowdedness of features in 2D each slices as well as the
large number of slices in each 3D volume, low efficiency becomes the biggest
challenge in manual annotation. Although remaining as the most accurate method,
the concern of this low efficiency becomes more serious especially when data
collection is speeding up these days. Here we propose to apply deep learning to
cryo-ET tomogram annotation to provide users a good trained neural network for
general cryo-ET cellular feature prediction and therefore help them accelerate cell
biology study. Our goal is to generate an annotated tomogram by taking each 2D
image slice of the 3D tomogram and passing it through our pre-trained neutral
network. In this project, we are aiming at annotating six features, including
background, microtubules, ribosome, double layer membrane, single layer
membrane and carbon edge. The input image to our algorithm is 512 by 512 pixels
while the output from the neural network is in shape of 6 by 512 by 512 predicting
six class probabilities for each pixel.



2 Related Work.

Very few studies have been reported so far to address the cryo-ET tomogram
annotation issue except Muyuan Chenl!l er al tried to use convolutional neural
network method to annotate cellular features semi-automatically. Although his
method largely accelerates the tomogram annotation compared to manual
annotation, it’s still less efficient considering that his method only allows for
single feature prediction. With multiple features in the image, users have to train
separate models by repeatedly going through same set of tomograms. In addition,
given the very small training dataset and shallow neural network of only four layers,
this method often predicts false positives and false negatives thus resulting in more
efforts in postprocessing.

3 Dataset and features.

The raw data comes from three sources. The first source is a PC-12 cell
tomogram in size of (96, 864, 868) used in Muyuan Chen’s paper. This data is
acquired at low magnification on cryo-electron microscopy. The second part
of the data consists of thirty-eight neuron cell tomograms acquired at medium
magnification of size (n, 960, 960) where n is between 113 and 630 and with
median 281. And the third part includes four high-magnification ribosome
tomograms from EMPIAR 10064 in size of (256, 1024,1024). Of these three
sets of data, only the first dataset has been manually annotated.

Lots of efforts are devoted in data preprocessing. First, top and bottom slices
from neuron and ribosome tomograms are excluded since these images
mostly have nothing but noise. Then 38 neuron cell tomograms are combined
into 8 large tomograms in order to obtain more accurate labelling. All neuron
cell and ribosome tomograms are semi-automatically labelled using
e2tomoseg_convnet.py developed by Muyuan Chen. The annotated features
includes microtubule, ribosome, double layer membrane, single layer
membrane and carbon edge. False positives from semi-automatic annotation
are largely excluded by thresholding and manual cleaning. Mask for noise and
five features are further encoded with 0 <= number < 6(class number). All
cleaned 3D tomograms and their corresponding 3D masks are extracted into
2D images with each image being cropped into four images of size 512 by 512.
The final dataset contains 16,856 512x512 images. Dataset is randomly
shuffled and divided into train set, dev set and test set(80/10/10).

4 Methods.

The U-net model! consists of a contracting path to capture context and a
symmetric expanding path that enables precise localization. The contracting
path includes four block units, with two convolutional layers and one dropout
layer followed by a max pooling layer in each block unit. Similar to contracting
path, the expansive path also has four block units. However, two convolutional
layers are followed by an up-sampling layer and a convolution layer. In each
unit, the convolutional output from contracting path is concatenated to enable



precise localization. The output layer of the U-net model has six channels with
each representing a class. Softmax function isn’t applied at this point since it’s
covered by the cross entropy loss function in Pytorch.
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Figure 1. U-net model.

For this multi-feature classification task, we employ a weighted cross entropy
loss function,

Loss(x, class) = weight[class] * (—x[class] + log(X g exp(x[j])))

because we have a very imbalanced dataset with noise class accounting for
more than 90% pixels in the dataset. Our model uses Adam optimizer algorithm
that takes the running average of previous gradients for parameter updating

during training. This model is implemented from the previous work at
https://github.com/zhixuhao/unet, but with pytorch.

S Experiments, results and discussion.

NOISE

MICROTUBULE RIBOSOME DOUBLE SINGLE CARBON

MEMBRANE MEMBRANE EDGE

TRAINING 0.94 0.57 0.47 0.48 0.71 0.60
(0.22) (0.22) (0.21) (0.50) (0.40)

o 0.98 0.77 0.01 0.66 0.79 0.40
(0.36) (0.40) (0.52) (0.10)

Table 1. Statistics of training and test for the final model(class weight is
[1,2000,3000,2000,2000,3000], learning rate is 0.001, batch size is 4, epoch
number is 50, Adam optimizer). Six features are targeted in training and test,
including noise, microtubule, ribosome, double membrane, single membrane
and carbon edge. Number in brackets represents the mean F1 score from the

last epoch.

During hyperparameter search experiments, we primarily explored batch size,
learning rate, class weights and number of epochs. Throughout the training, we
switched our evaluation metric from general accuracy to F1 score specific for



each class. In general, the metric F1 score for cell feature classes is relatively
low compared to noise class. Given that noise accounts for more than 90% of
the pixels in the dataset, this class imbalance poses a potentially challenging
problem for better neural network training. We observed training loss dropping
throughout the training epochs, however, for each feature class, especially for
ribosome and carbon edge, the high variance of F1 score across batches in each
epoch training suggests the bias in data loading during training and testing.
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Figure 2. Neural network prediction. Our U-net model offers an relative accurate
annotation for microtubule, double membrane and single membrane, but not for carbon edge
and ribosome. Arrows point to areas where the model outperforms the labeling.

Despite the imperfect performance by F1 score evaluation metric, we find that
our model shows relatively good accuracy in predicting microtubule, double
membrane and single membrane. Especially, it accurately predicts microtubules
and double membranes in areas where these features are mislabeled as false
negatives. However, the model performs poorly in terms of prediction on
ribosome and carbon edge. Considering the relatively rare occurrence of these
two features in the dataset, up-sampling or application of higher weights will
be tried to solve the problem.

6 Conclusion and Future Work.

The preliminary results of our U-net model shows that deep learning offers an
relative accurate annotation for several cellular features including microtubule,
double membrane and single membrane. Compared to shallow neural network
reported previously which targets only one feature, the U-net model performs
better in terms of low false positives. However, because of the class imbalance
especially for ribosome and carbon edge, our model does not show perfect
prediction on these features so far. Up-sampling of minority classes and
introducing more data of these features is the next step we’re aiming to try.

As good data labeling plays a critical role in model performance, in the next
step, we plan to manually label the dataset to exclude false positives and false
negatives. Considering significant class imbalance, we also need to get rid of
images with little cellular features to down-sample the noise class, and
meanwhile add more data with ribosome and carbon edge to balance classes.
Even though we shuffled data before data splitting, we still observe the



existence of data bias based on the high variance of F1 score for each class and
testing loss. We speculate that this is caused by large difference in the diversity
and crowdedness of features among images. Therefore, we have to be more
cautious in balancing all classes in training set, development set and test set.

In the future, we plan to try 3D U-Net on tomogram annotation considering
some features e.g. microtubules has little information on 2D slices when they
go in Z direction. Due to the limitation of computing source at present, we were
not able to try large batch size in training the model, but in the future, we hope
to try it with more GPUs.

7 Contributions.

Since the data preprocessing step demands lots of efforts, both team members
Weijiang Zhou and Yanyan Zhao participated in labeling and cleaning the data.
Pipeline code was written by Yanyan Zhao.

8 pipeline code.
https://github.com/YANYANZH/cs230_project
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