CS230

Detection and Classification of Defects in Parcel Packaging Using Deep Neural
Networks

Hodges Haywood
SCPD
hhaywood@stanford.edu

Abstract

I investigate image classification on detecting and classifying structural damage to parcel
packages that travel on an automated conveyor system. Currently, industrial sized automated
parcel conveyance systems are manually monitored for the detection of damaged or defective
packaging. Humans are not able to spot every damaged package on the many miles of
conveyance belts. I investigate the challenge of using convolutional neural networks to classify
the structural integrity of individual parcel packages on automated conveyance systems at
various points during their journey. Convolutional neural networks have been successfully used
in many practical areas, including defect and damage detection.

1 Introduction

Everyday, logistics and shipping companies lose millions of dollars because of damaged package claims from consumers.
Statistics show that one out of every ten packages are lost or damaged[10]. This might not seem like much at first, but these
companies ship millions of parcels per day. So, that amounts to hundreds of thousands damaged packages per day.

Often the contents of the parcels spill out onto the automated conveyor systems and become permanently damaged, or
stuck, causing production flow stoppage. These packages might contain vital medicines, hazardous materials, hard metal
objects, clothing, or even small weapons or ammunition that might become dislodged in the motor housings of the
conveyor. Often times, the shipping labels are damaged along with the packaging and these packages need to be intercepted
before they reach the label scanning cameras above the conveyors. Otherwise the system will not know where to divert
packages with then become stuck in a continuous loop.

I investigate building a classification system that can detect whether a package is damaged or defective.

2 Related Work

Much work has been done in the areas of damage and defect detection and classification. Weimer, D., H.Thamer, B. Scholz
et al. introduced a neural network which uses random generated image patches and statistical feature representations for
defect detection on textured surfaces[1]. Essid Oumayma, Hamid laga, and Chafik Samir et al. have developed a machine
vision framework for efficient detection and classification of manufacturing defects in metal boxes[7]. Their experiments on
a database of real images have demonstrated that their work could out-perform the best models while remaining
computationally competitive[7]. Wang, Teng, et al. used spatial distribution of potential pavement crack pixels for the
detection of fissures in pavement whereby they could separate the cracks from pavement background. Their results showed
that they could achieve higher detection as well as fewer false positives and false negatives compared to statistical learning
based methods like Support Vector Machines(SVM)[10]. Fangzhou, et al. experimented with 3-dimensional deep neural
networks to detect the presence of cancer nodules in lung tissue. Their results showed that using 3D neural networks
effectively detected regions of malignant nodules[11]. Although this work is in the field of medicine, the application is the
same; finding defects whereby the defects or damage are irregularly and randomly shaped sub-regions. My work differs

from the previous approaches in that I did not use localization in the sub-regions of defect or damage. However this leaves
much opportunity for improvements in future work where I experiment with different approaches to localizing defected and
damaged regions.

3 Dataset

The dataset consists of 2000 training, 200 validation, and 200 test images. Half of the images are of boxes or packages with
surface tears, holes of various size, or gashes. The other half of the images are of boxes or packages without defects. The
data was collected from a Google search and from photographs taken at a logistics and shipping company.

3.1 Data Pre-processing

Pre-processing consisted of putting the data into three separate folders named training set, validation_set, and test_set. Each
of these directories contain the two directories “damaged” and “un_damaged”. I used the Keras
flow_images_from_directory feature to turn these two directories into classes. The data are initially jpeg images. They are
decoded into 3-channel(RGB) arrays of pixels and then converted into floating point tensors. The pixel values are then

rescaled(normalized) by a factor of 1/255. The data is formatted into tensors prior to being fed into a neural network.
Neural networks work better with pixel values that have been rescaled to the [0,1] interval[6].

4 Methods

All of the models used binary cross-entropy loss and sigmoid binary output. See equations (1) and (2).
4.1 Hardware and Software

The work was done using the keras framework with a Tensorflow backend. The models were trained on a desktop pc using a
Nvidia Geforce 1080 8GB GPU.

4.2 Baseline Model

The baseline model consists of 5 convolution and maxpooling pairs, a flattened layer, a dense layer and a sigmoid output.
This baseline was created in order to investigate how a simple model would perform.

4.3 Baseline Model with Augmentation and Dropout

I then added augmentation and dropout to the baseline model. Augmentation and dropout are used together to help reduce
overfitting. I set dropout to be 0.5 and use width shift, height shift, rotation, and horizontal flip in the augmentation setting.

4.4 Pre-trained Models

The pre-trained models include VGG-16, ResNet-50, and Inception-v3. I removed the top fully connected layers from these
models and froze the remaining convolutional layers. Freezing of the pre-trained model was done in order to preserve the
weights. I then connected fully connected model with sigmoid outputs to the tops of the frozen layers.

44.1 VGG-16 Architecture

The VGG16 convnet was originally trained on 1.4 million labeled images and 1,000 different classes[6]. I felt this model
was a good choice since it was trained on so many common images and that it might generalize well to the image data.
VGG16 is also a good architecture from which to gain valuable intuition on how convolutional neural networks are built
and how they work.

4.4.2 ResNet-50 Architecture
I chose ResNet-50 to investigate if its architecture can speed up training. ResNet-50 is a residual network that uses skip

connections to add an early signal to the output of a layers much deeper into the network. This allows the model to make
progress early on in the training.

4.4.3 Inception-v3 Architecture

The Inception-v3 architecture helps to reduce computational cost by introducing 1x1 convolutions to create bottlenecks in
the network.

4.4 Relevant Equations
The binary cross-entropy loss function is expressed as:
N
J = =" yilog(ho(x:)) + (1 — i) log(1 — ko)) ()
=1

The sigmoid output function is expressed as:

1
he(x) = ——5r 2
0 (1+e= 0T @
Flattening
Input Image Sigmoid
Output
- .
s el Size: 1
Pocling
128x128 Activation:
Sigmoid
Filters 2 Filers64 Filwrs: 128 Filers 128 Filers: 128
Sze 2 Sze 20 Sae 23 Sam W Sze 23
Poding 22 Pading 22 Pagng 212 Pading 22 Poding 22
Actvaion: Relu Actvaiion: Relu Actvsion. Relu Acivaion Reu Actvaion Relu
512

Baseline 2D Convolution and Pooling Layers Fiattening

With Augmentation & Dropout
Dropout
Sigmoid
Output
Input Image
‘ Size: 1
Peoling:
. Activation
Wi Sigmoid
128x128 -
Fiers 2
Sze 33
Poding 22
512

Flars6 Filters: 128 Firs: 120 Fitrs: 120
Sze 33 Sze 33 Sz= 33 Sze 33
Poding2:2 Padieg2:2 Podking 22 Poding2:2

Actvason: Relu Actvasion. Relu Actvaion Relu Actvsion Relu Actvson Relu

Three Distinct Pre-Built Convolutional
Network Models

Input Image
Sigmoid
W veels =
256

Flattening Fully Connected

O
See: 1
Pooling:

128x128

8192
Connedtions Connections (all modeks)
VGG16&
ResNet50
18432
Connections
Inceptionv3

Figure 1. The baseline, baseline with augmentation and dropout, VGG-16, ResNet-50 and Inception-v3 models

5 Results and Discussion

Table 1 and Figure 2 below both summarize the results and performance of the five models. The VGG-16 model had the
best performance with 84% training accuracy and 88% validation accuracy. However validation accuracy should not be
higher than training accuracy. This could be just a rare, random chance. The baseline model had the highest training
accuracy of 99% with a validation accuracy of 80.5%. This indicates high variance and overfitting. The inception-v3 model
had the lowest training performance of 77% with a validation accuracy of 67%. This would indicate high bias. With the
exception of the ResNet-50 model, the validation accuracy of each model was not too far off from the training accuracy.
The test accuracy each model was low compared to their validation training accuracy. The transfer learning models seemed
to do better on test accuracy than the baseline models.

Learn Training Validation | Training Validation | Test Transfer
Rate Loss Loss Accuracy | Accuracy | Accuracy Learnmg

Baseline
Model

Baseline plus
Augmentation
and Dropout

VGG16
ResNet50
Inceptionv3

0.0001

0.0001

0.0001
0.0001
0.0001

1.02 99.5% 80.5% 25%
30 0.28 0.42 87% 83% 35%
30 0.36 0.37 84% 88% 48%
60 0.23 217 89% 50% 50%
30 0.50 2.98 7% 67% 50%

Table 1. Results from training and testing

VGG16.

‘Baseline model

ResNet50

Figure 2. Graphical view of results along with confusion matrices

No

Yes
Yes
Yes

5.1 Visual Analysis

Visual analysis of both baseline models showed no specific activations in any of the layers although the appearance of the
channels in each layer were different between the two models. As expected the regions of damage in the regions of damage
showed very little activation. Figure 3 illustrates the visualizations of the layers of both models. With further work, the
regions of defect or damage could be activated if the models were to be trained on appropriately labeled images, where the
regions of damage are manually localized, bounded, and annotated[1][10][11]. See Figure 3

) Baseline model.activation of all
' 8 JeatE I | TE R E E

IS ¢

Test Image

80 100 120

Channel 32 of first activation layer

Figure 3: Visualization of intermediate layers for baseline model and baseline model with augmentation and dropout

6 Conclusion and Future Work

Despite having used five different models including three pre-trained architectures, all of the models performed poorly on
the test data. Visualization of intermediate layers show that there are no specific activations, particularly in the zones of
damage or defect. This is most likely due to the models not being able to separate background noise in the image, the
background being the areas outside the regions of damage or defect. If the data had been trained on images where the
regions of damage or defects were manually localized and surround with bounding boxes or circles and then annotated,
much better performance results would have be attained. This leaves much room for improvement in future work where I
experiment with different approaches to localizing defect and damage regions such as the method proposed by[7]. One such
approach is to pre-process the training data by manually localizing the regions of defect. This should lead to better
performance. Subsequent visualiztion of the convolutional layers should show activations in these localized regions.

Link to code can be found at this github link: https://github.com/usejourn/StanfordCS230

References
[1] Weimer, D., H. Thamer, and B. Scholz-Reiter. "Learning defect classifiers for textured surfaces using neural networks
and statistical feature representations." Procedia CIRP 7 (2013): 347-352.

[2] Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep neural network models for practical
applications." arXiv preprint arXiv:1605.07678 (2016).

[3] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv
preprint arXiv:1409.1556 (2014).

[4] Bakhary, Norhisham, Hong Hao, and Andrew J. Deeks. "Structure damage detection using neural network with multi-
stage substructuring." Advances in Structural Engineering13.1 (2010): 95-110.

[5] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." European conference on
computer vision. Springer, Cham, 2014.

[6] Chollet, Francois. Deep learning with python. Manning Publications Co., 2017.

[7] Essid, Oumayma, Hamid Laga, and Chafik Samir. "Automatic detection and classification of manufacturing defects in
metal boxes using deep neural networks." PloS one 13.11 (2018): e0203192.

[8] Gopalakrishnan, Kasthurirangan, et al. "Deep Convolutional Neural Networks with transfer learning for computer
vision-based data-driven pavement distress detection." Construction and Building Materials 157 (2017): 322-330.

[9] Géron, Aurélien. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to
build intelligent systems. " O'Reilly Media, Inc.", 2017.

[10] Wang, Teng, et al. "Automated shape-based pavement crack detection approach." Transport 33.3 (2018): 598-608.

[11] Liao, Fangzhou, et al. "Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or
Network." arXiv preprint arXiv:1711.08324 (2017).

[12] Sivaramakrishnan, Rajaraman, Sameer Antani, and Stefan Jaeger. "Visualizing deep learning activations for
improved malaria cell classification." Medical informatics and healthcare. 2017.

