The Classification of Musical Scores by Composer

Christina Ramsey Chenduo Huang
Department of Computer Science Department of Computer Science
Stanford University Stanford University
cmramsey@stanford.edu cdhuang@stanford.edu

Daniel Costa
Department of Computer Science
Stanford University
dcosta2@stanford.edu

Abstract

The aim of this project was, given a musical score, to accurately predict which
composer wrote it. We believed that this project would be an interesting experiment
in audio classification and would potentially demonstrate where composers were
influenced by other composers; at the same time, we believe that this project’s
importance lies also in its easy generalizability to other musical recognition tasks.

Here, we built an LSTM and a CNN that determine who composed a piece. The
input is a section of a score, extracted from a midi file, while the output is a specific
COmposer.

Based on our results, the CNN outperformed both the LSTM and the baseline. The
LSTM’s overall weak performance is likely a result of an issue with the processing
of input data.

1 Introduction

We recognized early on that it was an ambitious task to train our model to recognize a specific person
from a wide range of genres, musical styles, and composers; for this reason, we decided to deal only
with a preselected list of classical composer in order to limit the scope of the project. That being said,
we accumulated enough data to expand into additional eras, genres, or composers if desired.

We foresee that this project will be an interesting experiment in audio classification and will potentially
demonstrate where composers were influenced by other composers. However, as stated, we were also
excited at the prospect of its easy generalizability to other musical recognition tasks. As our project
has trained neural networks to recognize and respond to specific features of classical scores, it could
thus be frozen and used as the first half of an expanded architecture that could classify a wider list of
composers or genres, identify specific songs, or generate new midi scores, for example.

Input and Output

Originally, we had planned to use data from http://kern.humdrum.org, which includes .krn file
encodings of many compositions we will use as training and test data. We expected that we would
take numeric representations of this data as input into our model; however, due to difficulties in
parsing and interpreting the .krn format, we eventually decided to pursue a different method.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Instead, we decided to use midi file representations. Unlike MP3 files, these midi representations
don’t contain actual audio data; they instead contain musical information that encodes how the sound
it represents should be produced. Midi files represent the score of a piece as that piece was specifically
written; unlike audio files, which feature a performance of the piece and potentially include mistakes
or the performer’s interpretations, midi files objectively record instructions for how a piece should be
played as the composer envisioned. This information is encoded as a series of numbers, as shown in
the Dataset section below. However, python packages that allow you to extract information about
certain features of midi files, including instruments used, the piano roll, key and time signatures, and
etc, exist to help us interpret these files in our project.

Each input to our model is a midi file. The output was a number corresponding to a particular
composer who we predict composed the piece. Information about the specific composers and the
preprocessing for these midi files, as well as a specific example of a midi file representation, is
included in our Dataset section below.

2 Related work

We were influenced strongly by a paper by Lebar et al [1] that also explored identifying composers.
However, the paper itself was written in 2012 and the methods that it used do not reflect current
deep learning implementations. We believe that applying more modern methods should significantly
improve the results reported in the paper. In addition, the previous paper only considered pitches and
their duration as input into the models. We believed that we could find more predictive features or
experiment with sequential deep learning models to improve the classification accuracy they stated.
Our exploration was further enhanced by the work of Sander Shi [2], who implemented supervised
learning using both a Multi-layer Perceptron model and a Support Vector Classifier model for the
task of classifying midi files. While he too dealt with the identification and extraction of important
features, he achieved success with his approach. His work heavily influenced the approach to our
baseline.

We also took time to understand the research Cataltepe et al [3], who experimented with the use of
midi files and their audio features for the task of midi classification. They worked specifically with a
representation of the distance between midi files, using the Normalized Compression Distance to
achieve a similarity score between two given pieces. This gave us insight into information about the
structure and encoding of midi files, but did not inform our future implementation.

We looked instead to the project done by Huang and Wu [4], who used an RNN to generate music
with both harmony and melody. Unlike the first few papers, this relied primarily on deep learning
methods instead of solely feature extraction. However, their project, unlike ours, was generative in
nature. Likewise, work done by Kalingeri et al [5] to generate music, was based off of midi files. It
too used no specific information about musical structure, including anything about notes or cords, in
their learning process. This was an approach that we wanted to achieve, although we aimed for the
goal of classification rather than generation. Finally, Lee et al [6] inspired us to implement a CNN
imitating the VGG net. Structures with similar to the VGG net had been used extensively for music
audio tagging. While the input and output of this task is slightly different from our own, we were
convinced that there were many things we could borrow from the paper to train a successful CNN.

3 Dataset

We gathered 443 classical songs in midi format from the following 9 composers: J.S. Bach, Byrd,
Chopin, Hindel, Bart6k, Hummel, Mendelssohn, Mozart, and Schumann, with about 50 pieces from
each composer. The midi files themselves were collected from http://www.midiworld.com/classic.htm,
which is massive collection midi representations of songs from different genres, eras, and composers.
We decided on these specific composers because they were all prolific classical, baroque, and romantic
composers. Not only was it easy to locate ample data for our model, but these composers are widely
regarded and recognized: classification error by experts and musicians would be very low, meaning
that it should be possible to build a classifier that should approach this high accuracy. We hope that
their styles can be learned and captured by our models.

During our preprocessing, we wrapped these
midi files in a python midi wrapper (pretty midi)
that allowed us to work with specific features of
each midi representation. While this was done
for several reasons, our primary goal was to stan-
dardize our input; the two main factors we were
worried about were the variety in instruments
and length within each piece. To correct this,

4d54 6864 0000 0006 0001 000C 00CO 4d54
726b 0000 005a 00ff 5804 0402 1808 00ff
5103 05e8 1800 ff59 0204 0081 9220 ff51
0306 0570 60ff 5103 0624 fc6@ ff51 0306
454e 60ff 5103 0672 8760 ff51 0306 9626
60ff 5103 @6bb 5860 ff51 0306 €237 60ff
5103 05e8 1800 ff51 0306 1026 0off 2foe
4d54 726b 0000 168b 00ff 2101 0000 ffo3
1447 7261 6e64 2050 6961 6e6f 2020 2020
2020 2020 2000 bo5b 7b30 c00@ 8110 b07
7f30 0a40 8550 9038 3f00 2c30 8b68 8038
4018 2c40 0090 313a 0025 3038 8031 4007

9038 2d15 8025 4024 3840 0790 3d3e 3880

3d40 0890 402e 3980 4040 0790 3d30 3980
3d40 0790 3837 3880 3840 0990 313f 3880
3140 0790 383b 3980 3840 0790 3d31 3880
3d40 0890 4038 3980 4040 0790 3d2f 3980
3d40 0790 3839 3880 3840 0990 313e 3880

P .
we extracted each piece’s piano roll, which was gzttt TRl e 8 25 oo Lt s
a representation of the piece as though played o . SN 10 0750 352 3980 3640 0700 3d3f 2880
from a single piano, and split up each pianoroll ~ ° e
into evenly sized chunks. We also used a sliding
window approach as follows: a piano roll rep-
resented by ‘abcd’ with a window size of two
would be split into chunks ‘ab,” ‘bc,” and ‘cd.’
The specific size of our window and the sample rate from the chunks of each piano roll were para-
maters that we tuned within our architecture. While we tried to keep the number of pieces similar
for each composer, we noticed a huge imbalance in the average music length. Therefore, we also
experimented with evening up the samples of each composer by randomly discarding generated
samples from composers who have more than the others.

Figure 1: Midi representation for Frederick
Chopin‘s “Fantasie Impromptu" (Piano Solo)

Each of these calculated samples became an input to our model; the size of each of these samples
was (128,x) where x was the size of the chunk we wanted (a hyperparameter we tuned, influenced by
the piano roll sampling frequency and time length). Because we also varied the window and sample
size used, we do not have a specific number of training, validation, and test examples. However, 15%
of our data went into our test set. Of the remaining 85%, we treated 15% of that as a validation set,
selected as a random subset of the data during training.

4 Methods

Baseline

We noted from our research that many projects saw success using an SVM for classification. In
fact, the SVM was consistently the most accurate classifier out of each of the methods that Lebar
et al [1] tried and across all of the composers they analyzed. For this reason, we implemented
supervised learning via scikit-learn, using both a Multi-layer Perceptron model as well as an Support
Vector Classifier model, as our baseline, drawing inspiration from the work done by Sander Shi [2]
towards the classification of midi files. At their suggestion, we extracted features including tempo,
the number of time signature changes, and resolution, from each file, as well as supplementing this
feature extraction with additional information (for example, number of instruments in a piece) that
we thought could be important. We did not normalize these feature vectors. The test accuracy we
achieved was 0.33.

LSTM

We built a 2-4 layer LSTM to classify our input, according to the following standard equations for
activation, output, and gate updates. In doing so, we drew inspiration from the work of Rutosi [7]
and Dorsey [8], who had likewise worked with music classification via an LSTM and midi files in an
RNN, respectively.

a<t> = g1 (Waaa<t™1> + Wapa<> + b,)
y<t> = go(Wyea<t> +b,)
T = O'(Wl’<t> E Ua<t—l> 2+ b)
We tuned hyperparameters including batch size, learning rate, dropout for each included layer, L2

regularization, and how many layers to include. We also tuned parameters for piano roll cutoff
size, sliding window size, and the frequency of samples per second. Below are illustrations de-

picting the architecture of the model and the results it achieved as a result of tuning some of these
hyperparameters.

Roll Size Window Size Frequency Batch Size Learning Rate Num Layers Dropout L2Reg Train Acc Test Acc

1024 512 10 1 025 2 05,05 001 02008 0.0895
T 1024 512 10 32 01 2 03,03 001 02291 0137
1024 512 10 16 01 4 03,04,0405 01 02327 02268
1024 512 10 1 0.05 3 03,05,03 01 02277 02268
1024 512 10 1 0.05 4 04,03,0304 01 01959 01917
1536 1024 20 1 05 3 04,05,05 05 01446 02567
1536 1024 20 64 0.05 2 03,04 001 02325 02567
1536 1024 20 32 01 3 04,05,03 01 02173 01104
1536 1024 20 64 0.05 3 05,03,03 01 0.2166 0.214
1536 1024 20 64 05 2 03,03 001 01704 0.0925

These hyperparameters were chosen specifically to vary the complexity of the model and increase
the regularization, especially as, early on in our training, we ran into a recurring error where the
training error would be nan early on and the performance of the model would drastically decrease.
Once tuned properly, the classifications outputted by the model did become more accurate. However,
we still believe that one major issue with this model had to do specifically with the preprocessing
of our data. If we had more time, we would try increasing the sampling frequency of each piece
and decreasing the sliding window size to allow more overlap in each piece. With the numbers we
used, we had between one thousand and two thousand training examples, which was not enough to
correctly train a sophisticated model.

CNN

As discussed above, our CNN is greatly inspired by the VGG net. We utilized six 1D convolution
layers in total. We chose to use 1D convolution, according to the following equation, because for
music intuitively it only makes sense to model interactions along the time axis.

(oo}

yln) = z[n] « Aln] = Y " (K] - hln — K]

—00

The first layer had 32 channels and we doubled the number of channels every two layers similar
to what was done for the VGG net. In addition, we also used convolution filters of size 3 and max
pooling layers of size 2. A standard softmax layer was used last since we were solving a multi-class
problem. For regularization, we added 12 regularization in every convolution layer and a dropout
layer right before the softmax layer.

Besides the data augmentations we discussed in the dataset section above, we were also creative
when doing test set evaluation. To classify a midi file, we sampled chunks of the piano roll similar to
the data augmentation method and then classify each chunk using the trained model. We then treated
the softmax scores of each chunk as weighted votes for the classes. Finally we picked the class with
the highest accumulated vote as the final classification.

5 Experiments/Results/Discussion

For the most part, we didn’t quite achieve the performance that we were hoping throughout this
project. After some deliberation, we believe that the primary reason for this was our treatment of the
input.

Architecture Train Examples Val Examples Test Exaxmples Train Acc Test Acc
Baseline - - - - 0.33
CNN ~ 30,000 ~ 300 ~ 300 0.51 0.58
LSTM 1 1414 313 354 0.2327 0.23
LSTM 2 1514 379 335 0.2325 0.26

The results of training and testing with our different architectures. Here, LSTM 1 refers to the first set of data
preprocessing parameters and LSTM 2 refers to the second set. See the chart in the LSTM section for more
detail.

In previous sections, we already discussed the limitations with our data augmentation method used
for the RNN pipeline. If we sampled more overlapping data, the results could be different. Another

reason that the RNN did so poorly was because of the format and management of the input via the
piano roll method, which looks like it created a sparse matrix represented by notes (rows) over time
(columns) where a cell is 1 if a note is played at that time and O otherwise. This input is too empty
for the model to learn anything meaningful or specific about the input itself, much less about the
specifics differentiating each of the composers with whom we dealt.

The CNN, on the other hand, did better than both the LSTM and the baseline. For input of our CNN,
we explored and settled with randomly sampling all possible piano roll chunks. We sampled piano
rolls at a frequency of 10Hz for length 1024 and only took 10% of all possible samples. And we
further discarded samples until all classes have equal number of samples. This more aggressive
method of data augmentation greatly increased the training data and definitely contributed to the
success of our CNN model. We found that our CNN model performs best with relu activation, batch
size of 128, adam optimizer with default parameters, 12 regularization of 0.05 and dropout rate of 0.5.

Model loss Model accuracy

— Train
— T

0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

"Test" in the legend is referring to the dev set.

For our best run, the loss graph seems normal. As for the accuracy graph, while the accuracy of
the dev set (seen in green line) fluctuated a lot during training, it stayed on average near 50%. We
were not worried about this because the classification on individual chunks does not fully reflect the
performance of the prediction of the pipeline due to the presence of the voting method. In addition,
we find that if we adjust the model the train set accuracy can reach 80% or more but gap between
train set and dev set accuracy becomes significant, indicating a strong chance of overfitting. The
voting system for the final classification paid off and we ended up achieving 58% accuracy for midi
file classification on the test set.

6 Conclusion/Future Work

After viewing our results, we think that one major shortcoming of our project is that we don’t have
enough data samples from each composer to properly train our model, even with data augmentation
techniques. Going forward, we would either collect more midi files or convert existing audio files to
midi format to enhance our dataset. The next step would be to enhance our input; from our results, it
seems that the piano roll representation by itself may be perhaps too sparse to train our models to
recognize the finer differences between composers.

In addition to collecting more data, we could have spent more time tuning our hyperparameters,
particularly in regards to model complexity and number of layers. We think that there is great
potential to significantly improve the results of the LSTM.

We would lastly propose experimenting with changed types of models. The first is a dilated convo-
lutional neural net [9], as this would allow the model to focus on the piece at both a specific and a
coarser level. Finally, we think that there is potential to improve upon both the results of our CNN
and our baseline SVM by incorporating the output of the CNN as input into th SVM.

7 Github Repository

The Github repository containing all of our code can be found here:
https://github.com/chramsey/CS230-Final-Project

8 Contributions

Christina worked on data preprocessing, writing and tuning the baseline, writing and tuning the
LSTM, and helping to create the poster and paper. Chenduo worked on data augmentation, writing and
tuning the CNN model, helping to create the poster and paper. Daniel worked on data preprocessing,
error analysis, and helping to create the poster and paper.

References

[1] Lebar, Justin & Chang, Gary & Yu, David. (2012). Classifying Musical Scores by Composer: A machine
learning approach.

[2] Shi, Sander. (2018), Github Repository. Midi Classification Tutorial.
https://github.com/sandershihacker/midi-classification-tutorial.

[3] Cataltepe, Zehra, Yusuf Yaslan, and Abdullah Sonmez. "Music genre classification using MIDI and audio
features." EURASIP Journal on Advances in Signal Processing 2007, no. 1 (2007): 036409.

[4] Huang, Allen, and Raymond Wu. "Deep learning for music." arXiv preprint arXiv:1606.04930 (2016).

[5] Kalingeri, Vasanth, and Srikanth Grandhe. "Music generation with deep learning." arXiv preprint
arXiv:1612.04928 (2016).

[6] Lee, Jongpil et al. “Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw
Waveforms.” CoRR abs/1703.01789 (2017): n. pag.

[71 Rwuotsi, Ruoho. (2017), Github Repository. LSTM-Music-Genre-Classification.
https://github.com/ruohoruotsi/LSTM-Music-Genre-Classification/blob/master/lstm_genre_classifier_keras.py

[8] Dorsey, Brannon. (2017), Github Repository. Midi-Rnn. https://github.com/brannondorsey/midi-
rnn/blob/master/train.py

[9] Oord, A.V.D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.
and Kavukcuoglu, K., 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

