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We attempt to develop an LID system that classi-
fies very short audio segments into their language.

1 Background

Language identification (LID) has the potential to
greatly enhance multi-lingual ASR programs. Cur-
rent ASR systems such as Siri or Google Assistant
rely on a user to manually input their spoken lan-
guage. However, this is less applicable to multi-
lingual households, which is the case for 1 out of 5 res-
idents in the U.S., or similar settings [12]. Improved
LID programs can form the basis for enhanced ASR
systems that might be used assist multi-lingual fami-
lies, transcribe in international settings or route calls
of various languages to correct operators for example.

One challenge for LID systems is that they must be
able to recognize any speech segment from a language
rather than learning to recognize specific commands
like in a speech recognition task. The network must
therefore learn to distinguish a language based on
the structure of non-specific sounds, rather than by
matching audio up to a text transcription. Another
challenge for LID is that it needs to be able to clas-
sify extremely short utterances in order to be useful,
which differentiates this task from other classification
tasks such as song recognition [5].

Literature Review LID is a less well-researched
task than ASR. Network-based LID approaches often
used variations on LSTMSs, such as the models from
Zazo et al [4] and Gelly et al [2]. Newer LID ap-
proaches have also begun utilizing image representa-
tions, which is what we attempt in this paper. CNN’s
were successfully used for language classification by
Lozano-Diez et al [3], and have the added benefit of
utilizing relatively fewer parameters than other net-
work models. Bartz et al. achieved 98 percent accu-
racy on 10-second long samples from four languages
with a mixed CRNN (convolutional-recurrent) model
[1] and Zhao et. al applied a similar RCNN model for

speech recognition [17]. We attempt to classify sig-
nificantly shorter segments (3-second) on a wider set
of languages (6-class) with multiple speakers.

Approach We approach the problem using convo-
lutional networks because we expect LID on short
sequences to depend on the structure of individ-
ual sounds rather than simply time-based patterns.
For image-based processing, we start with spectro-
grams which have shown greater success in prior ap-
proaches than other visual representations such as
mel-frequency cepstral coefficients|[1].

Our initial approach is novel in that our sound seg-
ments are particularly brief, only 3-seconds long, and
we train on 6-classes compared to 10 seconds and
4-classes in Bartz et. al [1]. Our dataset also comes
from actual recorded conversations, so is complicated
by naturalistic pauses and inflections, exchanges be-
tween multiple speakers and background noise.

We train both traditional CNN’s and a Wavenet-
based model with dilated causal convolutions. The
Wavenet model, originally a generator, has not been
previously applied to classification [9]. Code is at
https://github.com/hiromendo/cs230

Input-Output The input to the trained neural
network will be a 3-second audio sample, and the
output will be the predicted language.

2 CNN Models

Data We use the CALLHOME dataset of recorded
phone conversations in six languages: English, Ger-
man, Mandarin, Spanish, Japanese and Arabic,
which contains 60 hours of data (in 120 files of 30-
minute calls) per language [11].

The data is converted from stereo to mono and
split into 3-second segments. We convert the audio
wav files into spectrogram arrays 2, which are visual-
izations of audio frequencies over time. We perform



a log-based spectrogram conversion by sliding a win-
dow (size = 20 x 20) over the audio file (step size =
10). At each step, a Fourier transformation is used to
convert sound signals into sine-based frequencies, and
we use a Hanning window which smooths the edges
around each window, based on the process described
in [10]. In total, we convert 3-second audio segments
into [299,161] sized numerical arrays which we pad
with zeros into a [300, 300] array.

Figure 1: Spectrogram: Frequency (y) over Time (x)

Our data included 25K samples for each of 6 lan-
guages. This was split into 105K samples for training,
22.5K for evaluation and finally 22.5K for the test set.

Network Models Our initial networks are CNNs
with softmax functions for multi-label prediction, and
cross-entropy loss. These models were written from
scratch using Tensorflow.

(A) 2-Layer CNN: We train a basic CNN with two
sets of convolution and pooling layers. We use kernel
size [5x5], stride 2, and valid padding. This simple
model, based on the basic CNN used for noise clas-
sification by Aykanat et. al [18], allows us a point of
comparison for networks with deeper layers. We im-
plement relu activations for all three networks, based
on their prior success in image learning.

Figure 2: 7-Layer CNN Diagram
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(B) 7-Layer CNN: We train a deeper, 7-layer
CNN as detailed in Figure 2. The network has five
convolutional layers, with pooling, followed by two

fully-connected layers, a structure we based on the
AlexNet which was shown to be effective for long-
form audio classification [14]. The original AlexNet
was designed for [224 x 224 x 3] inputs, compared to
our [300 x 300] inputs, so we decrease the size of the
initial filters and increase the size of the initial stride;
we reduced the number of dense layers and used valid
padding throughout.

(C) 16-Layer CNN (VGG-Based): We implement
a 16-Layer network with a VGG architecture as de-
tailed in Figure 3, based its success in acoustic scene
classification by Zheng et. al [19]. The network has
two sets of two convolutional layers followed by pool-
ing layers, then two sets of three convolutional layers
followed by pooling layers. We begin with 64 filters
and double the number of filters after each pooling
layer. Again, we use [3x3] kernels with stride 1 for
convolutions and [2x2] kernels for pooling with stride
2. We end with three fully connected layers.

Loss The final layer in all three networks is a soft-
max layer which is a dense layer with ¢ nodes corre-
sponding to the number of classes that are fed into
softmax activation function of the form

exp a;

softmax;(a) = S expar

Our loss function is a cross-entropy loss producing a
cost of the form

Loss = —(1/n) > [ylna+ (1 — y)in(1 — a)]

where the summation is over the samples in a mini-
batch, y is the true label and a is the predicted label.

Hyperparameter Tuning In our initial experi-
ments, we ran into challenges with over-fitting. Sub-
sequently, we applied dropout to all fully-connected
layers, settling on a keep probability of 80 percent af-
ter tuning. We also switched from a gradient descent
optimizer to an Adam optimizer for the two deeper
models because we observed the loss fluctuating up
and down during our initial experiments. During hy-
perparameter tuning, we found that learning rate had
the biggest effect on decreasing the loss quickly and
found 0.01 to work the best.



Figure 3: 16-Layer

CNN Diagram

1

=64,5=

input: [300 x 300]

—

3x3 conv, 64, 1
2x2 pool, 2
3x3 conv, 128, 1
3x3 conv, 128, 1
22 pool, 2
3x3 conv, 256, 1
3x3 conv, 256, 1
3x3 conv, 266, 1
22 pool, 2

3x3 conv, f

—» prediction

3x3 conv, 512, 1
3x3 conv, 512, 1
3x3 conv, 512, 1
202 pool, 2
3x3 conv, 512, 1
3x3 conv, 512, 1
3x3 conv, 512, 1
22 pool, 2
dense, 4096
dense, 4096
dense, 4096
dense, 6

reshape, [9x 9 x 512]

Training We trained with a Gradient Descent Op-
timizer with a learning rate of 0.01 for 20000 steps
with mini-batch size 100.

3 Wavenet Model

We also implement a Wavenet model in order to im-
prove on the standard convolutions by considering
the temporal element of audio.

Data We again use the CALLHOME dataset. We
now convert raw 3-second 16kHz audio files into ar-
rays of size 48000 each (16000 slices per second).
We then apply a p-law companding transforma-
tion, which aims to improve the signal-to-noise ratio
(SNR) by compressing the array value non-linearly
to between 0 and 1. This transformation stretches
the distance between numbers that are close to zero
and squeezes the distance between numbers that are
close to 1, with the idea that changes in small sounds
are more important than equivalent changes in large
sounds for language understanding;:

In(1+ple|

f(ze) = sign(zy) Tn (1)

where p is set to 255 indicating that the audio is
encoded into 256 quantization channels.

We used a lower-memory GPU when training the
Wavenet, so trained on 4 classes rather than 6. We
used 10K samples per class in the training set and
1K per class in the eval and test sets.

Network Model We implement a network model
based on Wavenet, but modified to be classifier rather
than a generator as shown in Fig. 4.

A stack of residual blocks makes up the core of the
network. These blocks contain dilated causal convo-

Figure 4: Wavenet Architecture
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lutional layers. Causality ensures our network con-
siders the temporal nature of audio data by applying
a masking to inputs that ensures that a node can only
consider learnings from nodes that evaluated tempo-
rally prior windows of inputs. Dilation indicates the
convolution is applied with gaps, and skipping inputs
in this way allows nodes to consider a larger area of
the input (a larger receptive field). In our model, we
stack dilated layers with doubling dilation rates in or-
der to improve our network’s ability to handle large
input arrays.

Inside each residual block are two dilated convolu-
tion layers, as depicted in Fig. 5. The convolution
with the tanh activation acts a filter, which is respon-
sible for feature learning. The convolution with the
sigmoid activation acts as a gate. The outputs from
these two activations are multiplied together element-
wise to form a final output z. This output z feeds
into: (1) the next residual block and (2) a residual
connection that passes deeper into the network.

The residual outputs from all the residual blocks
are summed together and fed into a relu activation.
This result is passed to a series of three convolutional
and two pooling layers that reshapes the output in
preparation for the final layer. The final layer is a
time-distributed layer with a softmax activation. The
purpose of using a time-distributed layer is to apply



Figure 5: Wavenet: Residual Block

the same dense function to many outputs across time.

Hyperparameter Tuning Our final architecture
implemented 9 residual blocks, which we found to be
the best layer number that balanced decreasing loss
and memory usage. Our final model had a learning
rate set at 0.0005 because we found that the model
loss did not decrease when learning rate was any
higher. We also lowered Adam parameters betal (de-
cay rate for first-moment estimates) to 0.5 and beta2
(decay rate for second-moment estimates) to 0.75.

Training We trained with the Adam Optimizer
and mini-batch size 32 for 36 epochs.

4 Results

We trained four models: a basic 2 layer CNN, a
7-layer CNN (based on AlexNet), a 16-layer CNN
(based on VGG) and a Wavenet model. The Wavenet
model gave us 86% accuracy on 4 classes and the 16-
layer CNN gave us 80% accuracy on 6 classes.

CNN Results Out of the CNN Models, we were
able to achieve an accuracy of 80 percent with the 16-
layer CNN, 75 percent with the 7-layer CNN, and 53
percent with the basic 2-layer CNN as seen in Figure
6, with losses shown in Figure 7.

We were able to achieve a training accuracy of 99
percent or higher on all our models. The discrepancy
between training and test accuracy suggests a vari-
ance/overfitting problem. For next steps, we believe
that increasing the training data sizes would be most

effective, because based on manual analysis, the au-
dio data from phone conversations can vary widely in
terms of speaker voice, words being used and ambi-
ent noise here we used only 25K samples per speaker.
We would also recommend exploring higher rates of
dropout or deeper networks.

Figure 6: Model Results

Training Set Accuracy Test Set Accuracy

2-Layer CNN 98.5% 53%
7-Layer CNN 99.0% 75%
13-Layer CNN 99.0% 80%
Wavenet 94.8% 86%

Figure 7: Model Loss Plots
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Wavenet Results The Wavenet reached 86% ac-
curacy on four languages. We implemented early
stopping here because we noticed that after 36
epochs, the training accuracy continued to increase
but the eval set accuracy began to decrease. We also
noticed that the loss decline slowed around 20 epochs,
after which we performed additional hyperparameter
tuning including lower the learning rate to 0.00005
and achieved another 10% increase in accuracy.

Error analysis The confusion matrix for the 16-
layer model on the test set is shown in Figure 5.
Mandarin and English were the most identifiable lan-
guages, where the net achieved 84% accuracy. No-
tably, Spanish was misclassified as Arabic 10% of the
time which may be because Spanish and Arabic share
roots and still have a large body of overlapping words
today. We also note that German was misclassified as
English 9% of the time, which may be because both



are Germanic languages and retain similar letter pro-
nunciations even today.

We also performed error analysis on our trained
models and found that 2 percent of our data-set could
have been discarded because these samples had no
sound or had unintelligible speech or ambient noise.

Figure 8: 16-Layer CNN Confusion Matrix
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5 Next Steps

Dataset Our audio dataset is challenging because
recorded phone conversations contain unpredictable
pauses, non-word utterances and multiple, sometimes
overlapping speakers. Additionally, our audio sample
segments are only 3-seconds long. Based on a hand-
classification of these samples, we were only able ac-
curately classify 4 out of 10 samples for languages we
were each fluent in. This suggests 3-seconds is often
not long enough to allow clear distinctions between
languages, particularly when the segments are sliced
from natural conversations rather than professionally
recorded narration. However, our results suggest a
relatively high accuracy rate can be achieved even
without cleaner data, so these models could be ap-
plied to single-speaker audio for higher efficacy.

Data Model A key issue with image-based audio
processing is the large sizes of the data files. This pre-

vents us from training larger datasets and also makes
iterating slower due to the time it takes to process and
upload data (uploading data to our cloud engine took
up to several hours). Due to memory constraints, we
reduced the datasets from 'float32’ types to 'float16’,
but we believe that user a higher order data type
could allow more accurate learning.

For our CNN’s, we only took into account spectro-
gram features of sound, which only captures tempo
and pitch implicitly. Training on chromagrams of
the sounds, which explicitly capture harmonic and
melodic characteristics of the speech, may have added
features that could improve our classification accu-
racy.

Network Architecture Our findings suggest that
deep networks are necessary to learn subtle variations
in short audio sequences. Our deeper networks per-
formed better by 30% or more than our basic 2-layer
CNN and we saw accuracy increase as we increased
the number of layers. For next steps, we would ex-
periment with deeper networks, such as Googlenet
which has 22 layers.

Our findings also provide results from a Wavenet
classifier, which has not been done before, and sug-
gests the Wavenet is effective as a classifier as well
as a generator. The Wavenet classifier performed
well on a four-class dataset and had the benefit of re-
quiring slightly less memory for its data inputs (size
48000 samples instead of size 90000 spectrograms).
We achieved significant improvements on the wavenet
accuracy tuning the learning rate, so expect an even
high accuracy could be achieved through additional
experimentation with the optimizer parameters.

Contributions Hiroshi worked mainly on finding
a data set, data processing, training, tuning, error
analysis and the poster. Cynthia worked mainly on
data processing, the network models, wavenet train-
ing, the diagrams and conclusions.
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