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Abstract

This project aims to explore deep learning methods to predict abusive language
and hate speech detected in social media, particularly Twitter. I implemented
a series of deep neural networks, including a Recurrent Neural Network and a
Convolutional Neural Network in order to analyze the text content of the tweets
and then investigated what classes of words and types of sentences were most
indicative for the models to classify as either abusive language or hate speech, or
neither of these.

1 Introduction

Sentiment Analysis is a field that has evolved a lot and gained a lot of momentum over the past years
with more processing power and newer techniques to analyze text and keep track of the contribution
of meaning from each word to the sentence as a whole. In this project, I explore the use of these
techniques and apply it to a field that has gained a lot of attention lately: hate speech on Twitter.

After preprocessing tweets, which entails cleaning them from unhelpful sentence markers, user
handles and other Twitter-specific key words, like RT' (Re-tweet), I move on to build models that are
able to classify the tweets as containing either hate speech, abusive language or neither of these. Then,
I explore what these Neural Networks are doing behind the scenes: Why does the model classify a
specific sentence as hate speech?

2 Related work

Classifying tweets as hate speech is a known problem within NLP and there is a number of researchers
that have looked into this. There are studies [7] that have used N-grams and TFIDF based approaches
to classifying the same three groups of tweets for this project, applying Naive Bayes, SVM and
Logistic Regression models and reaching a maximum validation accuracy of about 92%, while other
studies [2] have used Deep Learning to tackle a simpler version of this problem where there are only
two classes of tweets (hate speech and not hate speech), having reached a validation accuracy of 93%
using a RNN with an LSTM Layer, Random Embedding and GBDT.

There are other studies [16] that have also attempted both a binary and a ternary classification
approach and have reached 87.4% and 78.4% accuracy respectively, experimenting with different
groups of linguistic features and using Random Forest and SVM models. Other authors have looked
into more specific issues within the Twitter hate speech umbrella: This study [11] looked into
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detecting hate speech against black people, and this study [15] performed a linguistic analysis on the
type of discourse used in hate speech tweets.

Overall, very little formal research has been done on this issue with the use of Deep Learning
techniques, which is why I believe my exploration of the topic is using Neural Networks is very
worthwhile.

3 Dataset and Features

The dataset I used consisted of 24,783 tweets. Each tweet was reviewed by three different people,
each of whom classified them as containing hate speech, containing abusive language, or neither. The
most voted category for each tweet was the classification given to that specific tweet. It is important
to note that given the tweets were classified by different people, what these individuals consider as
hate speech, abusive language and neither is subject to their own interpretations of these terms.

From this raw dataset, we had the following percentage distribution of tweets for each of the
aforementioned classes:

Type % of total
Hate Speech 5.41%
Abusive Lang. | 73.42%
Neither 21.16%

I extracted the relevant columns from the CSV file using Pandas, and proceeded to perform basic
preprocessing that involved removing links and user handles (@person). Then, I used Keras’s
Tokenizer class in order to remove all punctuation, numbers and make all the text samples lowercase.

From that, I broke apart each sentence by the words they were composed of, encoding each word
using Keras Tokenizer’s texts_to_sequences. Each text extract was then padded at a maximum of
25 words, which is the average word count for a tweet containing 140 characters.

3.1 Data Analysis
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Top 50 words for abusive spesch
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4 Methods

In this project, I implemented three different Neural Network structures in order to see how they
compare and which one would be most appropriate for this specific classification task. All models
were trained with 300d GloVe embeddings. The first model was a Recurrent Neural Network,
where I used a Bidirectional LSTM Layer. The second one consisted of a Convolutional Neural
Network, where I used a Convolutional 1-dimensional layer, as well as a Max Pooling layer. Finally,
I implemented a model mixing the Convolutional Layer with the Bidirectional LSTM Layer.

When applied to NLP problems, the Recurrent Neural Networks, particularly those with the Long
Short-Term Memory (LSTM) layer, keep track of important information from earlier parts of the
sentence to create a better understanding of the semantics of the sentence and better predict an output.



The additional Bidirectional layer that wraps the LSTM layer makes this awareness of longer distance
relationships between words a two way street, where words at the beginning are weighted according
to those at the end, and vice-versa, according to relevance.

In NLP, the Convolutional layer for the Convolutional Network, along with the Max Pooling layer,
focuses the analysis on particular parts (words) of the sentence that contribute more significantly to
the classification process at hand.

The loss function of choice for all the models was the Softmax function, using Keras’ Sparse
Categorical Cross-Entropy built-in loss, that essentially applies log loss with respect to each of the
categories to predict which one the sample is most likely to belong to. Its formula for this study case
is as follows:
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5 Experiments/Results/Discussion

For reference, in the confusion matrices below, 1 stands for hate speech, 2 for abusive language, and
3 for neither.

5.1 Convolutional Neural Network

The CNN had the following layer set up: Trainable Embedding Layer — 1D Spatial Dropout (0.2
rate) — 1D Convolutional Layer (16 filters, kernel size 3, stride 1) — 1D Max Pool Layer (2x2 filters)
— Dropout Layer (0.2) — Dense Softmax Layer (3 nodes). My chosen learning rate was 0.001 and
the mini-batch size was 32. These hyper-parameters were the ones I got the best results with after
trying different learning rates such as 0.01, 0.005, 0.0001, and different mini-batch sizes, including
20, 15, and 100.

I trained this network for a different number of epochs and with different layer configurations in order
to experiment with different dropout rates for the Spatial Dropout and Dropout layers and number of
nodes for the Convolutional Layer, as well experimenting with the addition of a Dense ReLu layer
with different node counts.

I created a testing set composed of a random sample of 20% of the dataset, and a validation set also
composed of 20% of the remaining 80% of the initial dataset. The Validation and Training Accuracy
for each of the epochs are as follows, as well as the confusion matrix:

We can see that the model started overfitting approximately after the 5! epoch, with training accuracy
going up to more than 95% at 30 epochs, while validation accuracy became constant and peaked at
90.09% around the 28" epoch.

When we look at the confusion matrix, we see that the model is very successful at classifying tweets
marked as abusive language, with a 96% accuracy overall for this category, while it does poorly for
tweets classified as hate speech, classifying only 24% of these correctly, and mistakenly labeling
them as abusive language instead. This is likely due to the similarities pointed out earlier between
abusive language and hate speech, which seem to have very similar vocabulary frequencies. When it
comes to tweets classified as neither hate speech nor abusive language, the model also performs well
and is able to classify 84% of these correctly.

5.2 Recurrent Neural Network

The RNN had the following layer set up: Non-trainable Embedding Layer — Bidirectional LSTM
Layer (8 nodes total) — Dropout (0.2 rate) — Softmax Dense Layer (3 nodes). My chosen learning



rate was 0.001 and mini-batch size was 32. Unlike the CNN, I did not train the embedding weights,
and for this network the test split and the validation split were both 10% of the dataset. The Validation
and Training Accuracy, as well as the confusion matrix for this model were as follows:

We see that the model starter overfitting just like the CNN around the 5% epoch, with training
accuracy going up to 94.56% at 30 epochs, and with validation accuracy peaking at 91.08% and then
decreasing and finishing at 89.11% in the last epoch. Looking at the confusion matrix, this model
performed worse than the CNN for both the abusive language and the neither classes, but was better
by 10% compared to the CNN in classifying tweets that were labeled as hate speech.

Because this model started overfitting very early, I also implemented a version of it using Early Stop-
ping with a patience of 1, so training was automatically stopped after one epoch of no improvement
in validation accuracy. The Validation and Training accuracies, as well as the confusion matrix for
this same model with early stopping activated were the following:

The RNN with Early Stopping performed better than the previous two models when classifying
tweets as neither, and performed just as well as the non-early stopping RNN for abusive tweets,
but performed much worse than the two previous models for tweets classified as hate speech, only
classifying 16% of these correctly. The validation accuracy for this model was 90.99% at the end
of the last training epoch. This is most likely due to the fact that the model was trained for only 7
epochs, compared to 30 for the previous two, so the backpropagation effect wasn’t enough yet to
improve the accuracy across the three categories. However, the advantage of this model is that it
didn’t overfit the training data.

5.3 Convolutional + Recurrent Neural Network

My last model implementation mixed a Convolutional Layer with a Bi-LSTM layer in order to
see if the results would be any better than these two configurations separately. The layer set up
for the network was: Non-trainable Embedding Layer — 1D Spatial Dropout Layer (0.2 rate) —
Bidirectional LSTM Layer (8 nodes total) — 1D Convolutional Layer (16 filters, kernel size 3, stride
1) — 1D Global Max Pooling Layer — Dropout Layer (0.2 rate) — Dense Softmax Layer (3 nodes).
The chosen learning rate was 0.001 and the mini-batch size was 32.

The Accuracy across epochs and confusion matrix follow:

This model performed better than the Convolutional Model, with a higher accuracy for tweets
classified as hate speech (31% vs. 24%), but the same accuracy percentage in testing for the neither
category (84%). Despite fairly good accuracy distributions for the three classes compared to the
previous models, it didn’t outperform the first RNN trained for 30 epochs, that had better accuracies
for hate speech and abusive language labeled tweets. When it comes to accuracy for validation and
training, the model overfit the training data, just as the previous ones, with training accuracy peaking



at 93.13% at the last epoch, while validation accuracy peaked in epoch 9 at 90.41%, decreasing to
89.69% at the final epoch.

5.4 Summary of Models

Model Max Val Accuracy | Test Acc. Hate | Test Acc. Abusive | Test Acc. Neither
Conv1D (CNN) 90.09% 24% 96% 84%
Bi-LSTM (RNN) 91.08% 34% 95% 83%
Bi-LSTM (RNN) + ES 90.99% 16% 95% 87%
Bi-LSTM + Conv1D 90.41% 31% 94% 84%

5.5 Analysis of Predictions

It is interesting to look at the sentences that were miss-classified by the CNN model in the test set,
so I went ahead and did that. It would be somewhat redundant to perform the same analysis for
the other models, so I chose to focus on the CNN. For example, these are two samples that were
classified as abusive language, but were labeled originally as hate speech: "gucci mane in jail and
dropping mixtapes every month and you hoes cant even text back", "im feeling pretty fuckin ghetto
smh". In these examples and personally, I believe these sentences would be better classified as
abusive/offensive language as the model predicted, but that is not what they were labeled as. Even
more interestingly, the following is a tweet labeled as hate speech that the model classified as neither:
"i hope my future wife who ever she might be is sleeping or studying instead if being a hoe right now
nigga shutcho asss up". This tweet in particular (the last 4 words) was a reply to the previous sentence.
Although its author was negating the previous user’s hateful comment, his reply also contained hate
speech, but somehow the model assumed this was not classified as hate speech nor abusive language.
Perhaps the model was aware of this negating assumption, but it was still unable to catch the hate
speech/abusive language in the reply.

6 Conclusion/Future Work

In sum, it was interesting to analyze the issue of hate speech on Twitter with this dataset, which didn’t
only contain two different labels where tweets were classified as either hate speech or not, but with
a more nuanced distinction where abusive tweets were also a class. The initial data analysis was
indicative of the difficulty we noticed in the models to distinguish between hate speech and abusive
language, with all of the models miss-classifying a large proportion of hate speech labeled tweets as
abusive language.

Training the networks for 30 epochs, although leading to overfit, seemed to be good because all the
models were more able to more correctly classify hate speech tweets, whereas when I used early
stopping for the second model, the accuracy for classifications of the hate speech class was almost
half of that for the models that were trained for more iterations.

The model that best predicted across the 3 categories was the RNN trained for 30 epochs, and that
is given to its simplicity in terms of the construction of the network, united with the underlying
robustness of the Bidirectional LSTM Layer.

For future work, it would be interesting to increase the dropout rate in the dropout layers for all
models in order to reduce overfitting, as well as change the stride for the convolutional layers, and
train for even more iterations to see how well the model is able to learn. It would also be interesting
to search for more tweets that are classified as hate speech in order to even out the number of tweets
belonging to each of the three classes.

7 Contributions

This was a one-person project, and as such I worked on all stages of the investiga-
tion. Here’s the link to the GitHub repository with the code used to train the models:
https://github.com/emilianolr/cs230-project/
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