Deep Sketch Drawer
CS230 Final Project Report

Yipeng He Di Bai Wantong Jiang
yipenghe@stanford.edu dibai@stanford.edu wantongj@stanford.edu
Abstract

This is the final project report for CS230 Deep Learning Fall 2018-2019. In this
project, we aim to generate human-style sketches from real pictures. We use a
public dataset called Sketchy Dataset [1] and implement two different architectures:
Neural Style Transfer and Conditional GAN. We show that sketch images are
hard to generate with pure convolutional neural networks. On the other hand,
neural style transfer can be used to generate realistic sketches and GAN models
are promising for this task.

1 Introduction

In our project, we aim to generate human-style sketches from real pictures. The input is an arbitrary
colored picture with one main object and the output is a human-style black and white sketch of the
object. We tried three models: simple convolutional layers with mean squared error loss, neural style
transfer and finally, conditional GAN (both with holistically-nested edge detection). We show that the
simplest CNN does not generate satisfying results while the last two models could produce promising
sketch pictures.

We have seen a lot of work relevant to sketches. However, most of these work aim to generate colored
pictures from sketches. For instance, in [2], Sangkloy et al. aimed to produce images from sketches
with some color specified. Most of these work used datasets with images and corresponding sketches
drawn by human beings, which is time-consuming and cost inefficient. As a result, our project,
intending to generate human-style sketches from real pictures, could help enlarge and enrich relevant
datasets.

2 Related work

We found some related papers focusing on human-style sketches. In this section, we briefly introduce
them.

Sketch Recognition In [3], Eitz et al. used SVM with hand-crafted features to classify human-style
sketches. In [4], Yu et al. proposed a deep CNN model for free-hand sketch recognition that can even
beat human performance.

Sketch Generation In [5], David H. ez al. constructed Quickdraw dataset, and proposed sketch-rnn
model to construct stroke-based drawings of common objects. Unlike our outputs, they generated
a sequence of strokes simulating the drawing process, so RNN is appropriate in this case. In [6],
Yajing C. et al. further improved the sketch-rnn model so that multiple categories could be fed into
the model together. They used CNN instead of BRNN and modified the objective function. We

CS230: Deep Learning, Fall 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

inspired from them to use CNN to solve our problem. The above projects differentiate from us that
they both used sketches from Quickdraw instead of real pictures for training. In [7], Muhammad et
al. used reinforcement learning to train a sketch abstraction model. They got inspired from human
sketching instead of image translation. Their photo-to-sketch approach is proved to be superior than
the state-of-the-art alternatives.

Our project distinguishes from existing works that we use images with arbitrary background instead
of white background in [7] or stroke sequence in [5] and [6]. We do not consider human behavior in
this project (no strokes) but only image transfer.

3 Dataset and Features

3.1 Dataset

The dataset we use is Sketchy Database [1]. The dataset consists of approximately 75,471 sketches
and 12,500 objects from 125 categories. The team generated the dataset by inviting volunteers
to sketch photos that were shown to them for a limited time. It can be downloaded from http:
//sketchy.eye.gatech.edu/. In figure 1, we show an example. In the figure, the first one is the
real image, while the following 5 pictures are sketches of the image drawn by volunteers. All the real
pictures as well as the sketches have size 256 * 256 * 3.

/ 0

D T 2 & S

Figure 1: A sample of the Sketchy Database

To divide the data, there are 125 categories and each category contains 100 images, so we choose 80
images from each category for training, 10 images for validation and 10 images for test.

As shown in figure 1, the variance of the sketches is very large even for the same image. As a result,
we need some data preprocessing to filter out sketches that are damaged or inaccurate in order not to
affect training.

3.2 Data Preprocessing

Poor Sketch Removal Firstly, along with the dataset, they provided some annotation files that
specified poor-quality sketches. We wrote a script to remove all those sketches to avoid them affecting
training. After removal, there are four to five sketches for one image on average.

Sketch Selection After removing all the malicious sketches, we found that sketches of the same
image still had very large variance. So we chose to use one sketch for one image. We used the edge
picture generated by holistically-nested edge detection described in the next section and selected the
most similar sketch based on cosine spacial distance between the sketch and the edge.

Data Augmentation Though there are totally 12,500 images, there are only 100 images in each
category which are not enough for experiments with less number of categories. As a result, we rotated
and flipped the images and sketches to obtain more data.

Data Modification As mentioned above, all the sketches are of size 256 x 256 * 3. In order to fit
for the GAN model, we re-sized them into 28 x 28 * 1.

4 Methods

4.1 Edge Detection

We generate intermediate edge images using HED network, a convolutional neural network for
end-to-end edge detection. It inserts side-output layers after convolutional layers, then imposes deep
supervision on each side-output layer, and then adds a weighted-fusion layer to learn to combine
outputs. The loss is defined as follows:

— - - -

LW, @, h) = Lsiae(W, D) + L fuse(W, T,)

where W represents standard network layer parameters, represents corresponding weights of

side-output layers’ classifiers, h represents fusion weight. Lg;4. denotes the image level loss for
side-outputs, while L ¢,,.. denotes the error between fused predictions and ground truth label maps.

4.2 Neural Style Transfer

We synthesize sketchy images by mixing edge images and style of dataset sketches, based on
convolutional neural network VGG-Network. Inspired by neural style transfer algorithm, we use
edge images for content reconstruction and dataset sketches for style representation. Feature spaces
of 16 convolutional layers and 5 max-pooling layers are used. For content part, the loss is defined as
follows: .

Lcontent(ﬁa Z, l) = 2 Z(Fil,j - Pil,j)2

i,]

where ? represents the original edge image, z represents generated image, P!, F' represents their
feature representation (activation) in layer [respectively.
For style part, the loss is defined as follows:

L
Latyre(, T) :ZTZ i~ Aig)?
=0 %57

where @ represents the style image,? represents generated image, G!, A! represents their style
representations in layer [respectively, N' represents number of filters in layer / times the size of
corresponding feature map.

The total loss is the sum of content loss, style loss and total variation regularization. We perform
gradient descent on a white noise image to generate new imaged that match the ’content’ of edge
images and ’style’ of dataset sketches.

4.3 Conditional GAN

Another approach that we have explored is the usage of Conditional Generative Adversarial Networks
(CGAN). CGAN has been used widely in translation tasks and have proved to be effective in various
tasks [12]. A CGAN network is formed by two parts: a generator and a discriminator. A generator
aims to generate an image that is like a real image to discriminator, while the discriminator aims
to distinguish between a real image and a fake image generated by the generator. For CGANS,
discriminator and generator are provided an image as input, which allows the discriminator and
generator to use this extra information to perform their tasks. We adapt a normal GAN model used
on quickdraw dataset [14] and convert it into a CGAN where the generator has an edge map as input.
In our model, discriminator is not given an input.

For the discriminator, the model uses convolutional neural networks that had filter numbers with 64,
128, 256, 512, respectively, and then it is flattened and passed to a dense net with sigmoid activation.
The loss function used is binary cross entropy.

For the generator, the model first flattens the input image and passes it through a dense net. The output
is reshaped to shape 7 * 7 * 64. The model then performs transpose convolution to the image with
filters 32, 16, 8 with dropout. Finally, the model uses a convolutional layer with sigmoid activation to
output the fake sketch image.

5 Experiments/Results/Discussion

Before we turned to neural style transfer and GAN, we first tried using pure convolutional neural
networks to generate sketches. However, the results were not ideal. We then started to frame the
problem as finding a "bad" edge detector problem. When human draw sketches, they are mostly
sketching out the edges of the images.

In neural style transfer method, how a generated image looks like a human-style sketch cannot be
directly reflected by the loss (but it still conveys information of similarity), so we tuned hyperpa-
rameters (e.g., learning rate, 3; and S5 in Adam Optimizer) also by looking and judging the outputs
by ourselves. We tried different learning rates 0.5, 1.0, 10.0, 30.0. Among them 10.0 produces
the best results. It can been seen that after 1000 iterations, when learning rate is smaller than or
equal to 1.0, the outputs are pretty scribbled and noised, denoting that it hasn’t learned enough to
generate sketches, in other words it’s underfitted. When learning rate is 10.0, pretty good sketches
are generated, as shown below, with total loss 6.2257e+06 on average. When learning rate is 30.0,
the results turned out to have many more weird lines that shouldn’t appear in a human-style sketch.

Figure 2: outputs of HED + Neural Style Transfer

In CGAN experiments, we have also tried using different learning rates for the discriminator model
loss. We tried 0.8, 0.08, 0.008 and 0.0008. Out of the four learning rates, 0.0008 produces the
most reasonable images, which is shown below. With higher learning rates, the accuracy of the
discriminator quickly drops to around 0.5, which means the discriminator is randomly guessing. The
higher learning rates therefore limits the performance of the generator, as the generator can easily
"fool" the discriminator.

An important preprocessing step we did for training our GAN was to convert all the sketches from
black stroke white background to white stroke black background. Originally the GAN failed to learn
anything and produced images like below.

Figure 3: outputs using white background sketches

We can see that the fake images generated in the first two rows have similar orientations to the
conditional images. This shows a great progress in achieving what we aimed for - a sketch that
preserves the pose and orientation of an image.

=

Gﬁ
g b
OO HRB

f

0 0Hi B

T

Figure 4: outputs of Conditional GAN with edge input

'QQ

Admittedly, the results are far from satisfying and still have large room for improvements. After
experimenting with different convolutional neural network architectures, neural style transfer and
GAN structures, we have a better understanding of the task. First of all, Different human draw
sketches in different styles. For the same photo, different people can sketch in different detail
levels. Simply feeding color image as input and sketch image as target to a network is similar to
asking it to learn a general representation of different sketch styles. Therefore it may be hard to use
pure convolutional neural networks to generate sketches with color images. Having identified such
problem, we then tried approaches using edge detection. Edge detection algorithms reduces the noise
in an image and provides the most significant information of sketches: edges. With edges as input,
generative adversarial networks are able to capture the position and pose of an object. Even though
our discriminator and generator are relatively simple, this might indicate that black backgrounds with
with white strokes might be easier for networks to learn information from.

6 Conclusion/Future Work

Going directly from color image to a sketch that has a similar pose is difficult with our initial attempts
with convolutional neural networks. It is much easier to use edge inputs to generate sketches than
with color images as edges provide cleaner and conciser information to the network. Thus, we believe
framing it as a "bad" detector problem might be a good way of thinking to tackle this task. If we had
more time, we would first structure our project better.

First of all, we would spend more time in using GAN to generate sketches. We will develop and
experiment with more complex and advanced generator and discriminator networks. Currently the
discriminator model flattens image immediately, which may limit the information it can get from an
image. We would also try using color image as input to generator and discriminator. Additionally,
we would also explore cycle GAN, an advanced GAN network that has been used in art creation
tasks[11].

Second, we will try using Recurrent Neural Networks to develop generators. In the sketchy databases,
there are time stamps information for the strokes and there has been work using RNN networks to
generate sketches with time information.

Last, the cross domain embedding mentioned in [13] might also be a great way to explore the mapping
from image to sketch with better computational power.

7 Contributions

The code can be found at https://github.com/Baidi96/deep_sketch_drawer

Contributions of the team:

e Yipeng He: CNN model, Conditional GAN model
e Di Bai: HED, Neural Style Transfer model

e Wantong Jiang: Data preprocessing, Paper writing

References

[1] Patsorn, S., Nathan, B., Cusuh, H. & James, H. (2016) The Sketchy Database: Learning to Retrieve Badly
Drawn Bunnies ACM Transactions on Graphics (proceedings of SSIGGRAPH).

[2] Sangkloy, P., Lu, J., Fang, C., Yu, F. & Hays, J. (2017, July) Scribbler: Controlling deep image synthesis
with sketch and color. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Vol. 2).

[3] Eitz, M., Hays, J., & Alexa, M. (2012). How do humans sketch objects?. ACM Trans. Graph., 31(4), 44-1.

[4] Yu, Q., Yang, Y., Song, Y. Z., Xiang, T., & Hospedales, T. (2015) Sketch-a-net that beats humans. arXiv
preprint arXiv:1501.07873.

[5] David H. & Douglas E. (2017) A Neural Representation of Sketch Drawings. arXiv preprint
arXiv:1704.03477v4.

[6] Yajing C., Shikui T., Yuqi Y. & Lei X. (2017) Sketch-pix2seq: a Model to Generate Sketches of Multiple
Categories. arXiv preprint arXiv:1709.04121v]1.

[7] Muhammad, U. R., Yang, Y., Song, Y. Z., Xiang, T. & Hospedales, T. M. (2018) Learning Deep Sketch
Abstraction. arXiv preprint arXiv:1804.04804.

[8] Gatys, L. A., Ecker, A. S. & Bethge, M. (2015). A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576.

[9] Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of the IEEE international
conference on computer vision (pp. 1395-1403).

[10] Anish, A. (2015). Neural Style. https://github.com/anishathalye/neural-style

[11] Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-
consistent adversarial networks. arXiv preprint.

[12] Isola, P, Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial
networks. arXiv preprint.

[13] Sangkloy, P., Burnell, N., Ham, C., & Hays, J. (2016). The sketchy database: learning to retrieve badly
drawn bunnies. ACM Transactions on Graphics (TOG), 35(4), 119.

[14] Auger, C. (2018). quickdraw-gan. https://github. com/coreyauger/quickdraw-gan

