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Abstract

Image segmentation and generative inpainting are both active research areas in computer vision. We construct a
model that combines state-of-the-art from both domains to provide an end-to-end approach for object detection
and inpainting in images. We present results combining Mask-RCNN (1) to segment people and Generative
Inpainting (2) to generatively infill segments with inferred backgrounds. Specifically, our contribution is in
tuning and training Generative Inpainting on modified Mask-RCNN detection outputs with the end goal of
removing people using the MS COCO 2014 data set (3).

1 Introduction

End-to-end detection, removal, and inpainting of objects in images is an open and interesting research question. It has implications
for image-editing, image-based rendering and computational photography (4; 5; 6). The goal is to provide high quality image-
editing where specific objects can be removed and inpainted accurately with low computational costs. In this paper, we present
our work toward this task on specifically people in images. Given an input image, the goal is to generate white masks to crop
people, generate reasonable background content to fill the mask, and output an image with the people removed. As the task can
be broken down into a two-part process, detection and inpainting, our work is structured as a two-part model. We use:

1. Mask R-CNN (1) for instance segmentation to generate masks for target objects for deletion

2. Generative Inpainting (2) to propose visually plausible image content for masked regions

Mask R-CNN is a state-of-the-art instance segmentation model proposed in 2017 by He et al (1). Generative Inpainting is
an feed-forward generative network for inpainting proposed in 2018 by Yu et al (2). We combine these two state-of-the-art
models and optimize them to provide an end-to-end solution for removing people from input images. Specifically, our key
contributions in this paper are modifying the output of Mask R-CNN to generate better masks that remove human relics, and
training Generative Inpainting on the COCO 2014 (3) data set.

2 Related work

Our student project was inspired as a modified and new application application of MIT’s Deep Angel project (7). There are
few papers that treat detection and deletion as an end-to-end task; one such paper by Shetty et. al trains a single GAN to detect
and remove objects automatically (8). The GAN has a two-part architecture, a mask generator and an inpainter, which poses
difficulties in training. We investigate if combining two state-of-the-art models trained separately can improve performance.
State-of-the-art results have been demonstrated on instance segmentation with Mask R-CNN, (mAP scores of 62.3% for an loU
=0.5, 43.4% for an IoU = 0.7 and 39.8% on COCO 2016) (1). We focus our related work section on inpainting as inpainting is
the less established of the two sub tasks.

Classical inpainting largely relies on texture matching to generate plausible content for missing regions: To infill a missing
region, a search for nearest-neighbor patches with similar texture is conducted, and a simple copy-paste replication is done.
(9; 10)

Deep learning and in particular generative models have enabled the use of GANSs for image editing (11; 12) and inpainting.
Recent work formulates the task as a conditional generation based on both texture synthesis, and higher-level image features
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(4; 13; 14). Our chosen architecture, Generative Inpainting by Yu et. al, proposes a novel contextual attention layer which
matches generated patches with known contextual patches through convolution filters to improve texture synthesis (2), achieving
more novel and realistic inpainting than previous works.

3 Data set and Features

We utilized the COCO 2014 data set. To make training feasible, we sampled random subsets of COCO 2014 for our train/val/test
sets.In particular, a problem observed in our data set was the relative size of people in scene; in images where people occupied
the majority of the image, both Places2 and our trained weights faced difficulties generating infills as the majority of the image
was cropped. We elaborate on this in Section 5. In all, we used the following train/val/test data sets (numbered):

1. Train-40k: 40k images from COCO 2014-val used as main training set

2. Train-2k-no-people: 2k images sampled from 1. where images containing people were removed to investigate the
performance of model trained on images without people

3. Train-2k: 2k images sampled from 1. to perform hyperparameter search
4. Val-100: 100 images from COCO 2014-test used for initial error analysis

5. Val-100-no-large-crop: 100 images from COCO 2014-test where images needing large crops (with people occupying >
50% of image) was removed

6. Test-100-no-large-crop: 100 images from COCO 2014-test sampled from the same distribution as 5.

4 Model Architecture

4.1 Image segmentation: Mask R-CNN

Mask R-CNN builds on the object detection architecture Faster R-CNN (15; 1). The loss function on Mask R-CNN is given by:
L = L¢is + Lyox + Limask Where Lejs + Lpor. Limask 1 the average binary cross-entropy loss of the per-pixel sigmoid on the
binary masks. We modified Mask R-CNN to output both templates and cropped images, experimenting with boxes crops, masks
crops, and dilated masks crops of the targetted people.

Figure 1: Mask R-CNN architecture (1)

4.2 Inpainting: Generative Inpainting

Generative Inpainting is trained by performing random crops to remove sections of training images. The first stage is a coarse
reconstruction stage that uses a dilated convolution network trained on with ¢; pixel-wise loss that generates rough semantic
content for missing regions. The second stage is a refinement stage that is trained on two WGAN loss functions, one to examine
the global coherency of generated image, and the other for the local plausibility of missing content.

Figure 2: Generative Inpainting architecture (2)
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We used pretrained weights from COCO 2014 (1) on Mask R-CNN (16). These weights obtain 0.43 mAR@[0.5, 0.95] for
bounding boxes, and 0.38 mAR@[0.5, 0.95] for segmentation masks.



Figure 3: (Left tori

ght) examples of quality labels for good, okay, striped, solid

As we wanted our model to work end-to-end on images from the same distribution, we retrained Generative Inpainting on COCO
2014. Pretrained weights for Places2 (2) are used as our baseline. We discuss some performance metrics briefly:

Qualitative Metrics: Image quality was evaluated by a team of evaluators with labels defined below.

1. good: near perfect fill

2. okay: reasonable, but imperfect fill
3. striped: patterned but incorrect fill
4. solid: incorrect noise-like fill

Quantitative Metrics: As with other image generation tasks, an optimal quantitative metric is hard to establish. However, we
report the gradient norm as an indicator for noise of generated patches:

* Gradient Norm: calculated as the absolute value of the gradient norm within the generated patch minus the gradient
norm outside the generated patch with Sobel gradients

5.1 Mask R-CNN: Data set correction

From our tests, we observed that large crops were particularly difficult to fill. If large sections are removed, less context is left for
the generative inference, and creating appropriate infill is a harder task. We defined a large crop as a crop greater than 50% of an
image. We performed a large crop error analysis, displaying results in Table 1 below. Based on this, images with large crops
were removed from the data set distribution to align with our target task. This was also justified by the assumption that people
occupying > 50% of the image are likely the main subjects of images, hence the use case of removing them is less obvious.

Table 1: Generated images by quality and crop size
With large crop (Val-100) Without large crop (Val-100-no-large-crop)

Good 13 19
Okay 12 11
Striped 23 41
Solid 52 29

5.2 Mask R-CNN: Crop strategy

Mask R-CNN was chosen on the assumption that segmentation masks would leave a greater percent of intact inference content
because of its closer crop relative to boxes, allowing better inpainting. However, error analysis demonstrated a surprising trend.
Images with a mask crop resulted in generally lower quality results than a box crop. It appeared human relics (hands, edges of
clothes, etc) from imperfect masking remained which caused the GAN to include those edges as a feature when infilling.

To test this hypothesis, we created a dilated mask where the mask is widened to cover neighboring pixels. Infills were generated
for box, mask, and dilated masked crops, shown in Figure 4. We display the error analysis results on validation data in Table 2
below. The dilated mask is generally the best and therefore utilized for future experiments.

5.3 Generative Inpainting: Learning Rate

We searched multiple values for the learning rate hyperparameter: 0.00001, 0.0001, 0.001. We trained with early stopping
on Train-2k-no-people. Results are presented in Figure 5. As seen, modifying the learning rates caused large differences in
the outputs. We theorize the learning rate 0.001 was too high and led to the discriminator learning faster than the generator,
preventing the generator from learning a good mapping. We choose 0.0001, the highest learning rate able to learn textures.



Figure 4: (Left to right) generated images
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Table 2: Generated images from Val-100-no-large-crop by quality and type of crop

Box Mask Dilated Mask

Good 19 7 29
Okay 11 18 19
Striped 38 72 46
Solid 32 3 6

Figure 5: (Left to right) original image and generated images with model learning rates of 0.00001, 0.0001, and 0.001

5.4 Generative Inpainting: ¢, pixel-wise loss

For epoch 1 through 11 of the model with Train-40k, we observed a considerable number of striped images (patterned, but
incorrect fills) lacking use of nearby context. Based on this, we experimented with tuning the ¢; pixel-wise loss hyper parameter.
Higher /1, ¢; > 2.0, is recommended to infer more from the patch’s immediate neighborhood. Lower /1, ¢; < 1.0, is
recommended refine detail in blurry images. We trained two variations four epochs, one with /; = 2.0 and one with the original
{1 = 1.2 both initialized with epoch 10 of our trained COCO weights. We present results in Table 3 below. We found an unclear
trade-off, as the higher ¢; did lead to less striped images, however, the images that left the striped category were split among
better ("okay’) and worse (’solid’). For that reason, we stuck with the original /; = 1.2.

Table 3: Generated images from Val-100-no-large-crop by quality and ¢,
=20 ¢,=12

Good 3 3
Okay 10 5
Striped 50 77
Solid 36 14

5.5 Generative Inpainting: People vs no-people

We also tested if training Generative Inpainting on data without people would result in better performance than data with people
based on the task being to eliminate people and error analysis. We trained Generative Inpainting separately on both Train-2k and
Train-2k-no-people, initialized with Epoch 10 weights of the model trained with Train-40k.

We found that the performance of the model trained on Train-2k-no-people was marginally better than Train-2k 4.

6 Results

6.1 Results with Generative Inpainting trained on COCO

We present results for our Generative Inpainting model trained on Train-40k data alongside the baseline below. Figure 6 shows a
sample of images, full sets of which are provided in the GONE GitHub. Table 5 contains quality labels assigned during error
analysis, which show our model trained on COCO steadily improving toward the baseline. The baseline was trained significantly



Table 4: Generated images from Val-100-no-large-crop by quality and training data

people no people

Good 3 5

Okay 12 15
Striped 56 52
Solid 26 27

longer than our model according to the Generative Inpainting paper and GitHub (2). Table 6 shows quantitative results as the
gradient norm. The gradient norm is shown to decrease with training, however, the epoch 16 gradient norm is below the baseline
despite having lower quality images. This shows limitations to this quantitative metric as discussed in the metrics subsection.
Figure 6: (Left to right) original image and generated image from Test-100-no-large-crop with original, baseline, epoch 4, epoch
8, epoch 12, and epoch 16

Table 5: Generated images from Test-100-no-large-crop by quality and COCO inpainting model epoch
Baseline (Places) Epoch4 Epoch8 Epoch12 Epoch 16

Good 16 1 3 5 8
Okay 15 12 9 14 16
Striped 64 30 42 42 33
Solid 4 54 43 36 20

Table 6: Gradient norm on Test-100-no-large-crop by COCO inpainting model epoch
Baseline (Places) Epoch4 Epoch8 Epoch12 Epoch 16
Gradient Norm 0.000183 0.000289 0.000303  0.000144  0.0000791

6.2 Test set errors

We observed several errors on test data seen in Figure 7 below. From left to right, uncropped limbs, uncropped shadows,
uncropped objects used by people, and infilling a crop like a person. Some of these are limitations of the current system which
are not currently target tasks (e.g. cropping shadows), but would be important to generating a perfect image.

Figure 7: Error sample from 7est-100-no-large-crop

6.3 Further work

While the team was pleased with the results obtained in the short time during the CS230 course, there are certainly more
challenges to be addressed. The team believes investigating methods to ensure better masking, a more thorough random
hyperparameter search (including learning rate and /1), an experiment using larger no people training set (to help address the
infilling people error), and more time to train the COCO model may all prove fruitful. Some of the test set errors could potentially
be addressed by training Mask R-CNN to detect limbs, human shadows, and objects typically held by people. The team would
particularly like to compare pros and cons of the two stage approach used here to the one stage approach of Shetty et. al (8).



7 Contributions

All members contributed equally to the project. The team is grateful for reliable guidance from their mentor Abhijeet Shenoi.
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