Deep Learning for Enterprise API traffic

Mamoon Yunus
Forum Systems
mamoon@stanford. com

Abstract

From IoT to cloud services, modern communication almost exclusively relies on HTTP-based APIs.
Typically, corporations deploy an API gateway as a proxy to manage inbound and outbound API calls.
We focus on inspecting API gateway traffic log files and building DNN-based models for inbound traffic.
With a predictive model trained and enabled on an API gateway, intelligent traffic shaping and Quality
of Service (QoS) decisions can be made on-board the API gateway automatically, even before invoking
remote enterprise systems. We model remote latency based on inbound HTTP-based API messages.
We compare predictive metrics between sparse one-hot-encoded and dense Word2Vec-embedded
representations of inbound API messages. Our research shows that dense vector representation are a
viable and efficient alternative to encoded representations for HTTP-based enterprise API traffic.

1 Introduction

APISs are the backbone of our modern digital economy. As shown in Figure [1], typical API request-response pair
involves a client making an HTTP(S) call with a URI, query parameters, and additional HTTP header information,
to an API gateway deployed in the DMZ. The API gateway processes the request and invokes an enterprise system
such as database, application server or a mainframe (remote system). The response is usually an XML or JSON
message. To protect communication over APIs, corporations deploy an API Security gateway, such as Forum Sentry
[1] that acts like deep-content firewalls at the corporate edge.

1. Received an HTTP : " i
@l Forum Sentry P
4. Sending client a : API Gateway : :
WTE’J - : ! 3. Received an HTTP
' DNN Generate ; fesnonse

Granular Policies

2. Sending Remote Server
“| aProcessed Request

odab

T £ 2 T : T
Cloud DMZ Enterprise

Figure 1: Deep Neural Network adds granular policies to API gateway architecture

Centralizing API security is a core enterprise business practice [2] especially for companies that are on-boarding
hundreds of API services as they integrate with the customers and internal systems. Whenever a new API service in
on-boarded, a new policy has to be manually authored. Most companies keep coarse-grain policies that apply to
a broad array of API services. Although this strategy reduces the number of polices, it prevents companies from
setting fine-grain policies specific for a given APIL. Such fine-grain policies provide better Quality of Service (QoS)
but require labor-intensive policy authoring.

The objective of this project is to use deep neural networks to learn API traffic flow characteristics such as HTTP
remote latency. The trained DNN models can then be used to dynamically build fine-grained policies aligned with
customer specific API traffic patterns.

2 Related work

HTTP anomaly detection has been investigated using Naive Bayes on URLSs [4] and a variety of clustering algorithms
[5]. Commercial API security products claim machine learning and Al capabilities [3]. In this project we explore
novel techniques such as sparse and dense representations of deep HTTP header content, beyond URLs. We also
combine word embedding unsupervised techniques with supervised neural networks to build end-to-end DNNSs.
This end-to-end framework can scale with dynamic extraction of features that extend beyond HTTP headers to
deeper HTTP payloads (JSON, XML) in API-based communication.

CS230: Deep Learning, Winter 2018, Stanford University, CA.

3 Data and Features

For this project, Forum Sentry log files are the primary source for API data, although this may be extended any
sources of API data. For pre-processing these log files and extracting features, three python classes (LogData,
BaseFeatures, DerivedFeatures) are developed.

3.1 Input Features

From ~ 5M lines of log files, ~ 20, 000 round trip request-response pairs are extracted that represent 45 minutes of
business transaction before the log files roll over. These transactions serve as the data set for training and validation
with a 75%-25% training-validation split. As shown in Figure [2], categorical input features such as URI, Method,
Protocol and Client IP are extracted.

Scheme Method short_URL Client remote_latency
0 https POST [CareCredit/getAccount 10.78.36.12 359
1 https POST /MWEncryptD/services/TokenService 10.78.36.78 236
2 https POST /MWEncryptD/services/TokenService 10.78.36.78 235
3 https POST I/CareCreditiOvationRegister 10.78.36.12 641

Figure 2: Examples from data set.

10.78.41.20

http
url-58

172.2@}&3. M 78
url-51 & X
Ph urlyggur 3275436
[tighs rl-40
H 10.78,36.12
u 589 12 4
SR e 172.21.32.3
e urlHtl; HTTRA-33 172.21.32.2
url-28 pﬁ?gs
url-53 10.78,36.90

url-6

Figure 3: 2-D PCA for embedded vectors

We used sparse one-hot encoding and dense word embedding to explore feature representation. A total of 41 features
are extracted from HTTP headers. Using Word2Vec, we concluded that 5 features had non-repeating values. For
example, HTTP cookies are randomly generated for HTTP request and therefore have no predictive value since each
new message input to a trained DNN will have a unique random value for the cookie. Such features are removed
from the feature list.

2-D PCA visualization of word embedding vectors, Figure [3], shows that dense representation of HTTP header
features have a structure with certain features showing affinity. For example, in the top right corner, we see url-58,
http, and a client IP 10.78.41.20 clustered together. We inspected the log files manually to verify that indeed these
features are adjacent and in the same HTTP request. This, along with other, verified feature relationships provide us
confidence in the efficacy of dense vector representations as an alternative to sparse one-hot encoding.

As seen in Table [1], we considered a variety of feature counts and their encoded and embedded representations.
Our results will show that even for a dense vector of size D = 5, word embedding performs remarkably well.
Using this vector size, we obtain a high ratio of encoded feature values to embedded values. This shows a clear
information compression advantage for HTTP content when we choose to use dense embedding over sparse encoding
representation.

Features Encoding Embedding Ratio Vocab

37 19085 185 103:1 5125
17 10317 85 121:1 1881
8 322 40 8:1 204

Table 1: Encoding and Embedding Size and Ratio

The variation in number of features selected displayed in Table [1] is based on the structure of the HTTP headers.
The first 8 fields are required standard HTTP fields [9]. Beyond these fields, non-standard headers that are custom,

dynamic, and user-defined may exist. We construct a super-set of all such features and set them to None by default,
only to be populated when the features are present in a message.

3.2 Target

We target predicting remote latency based on HTTP request header features. The remote latency is captured in
milliseconds as shown in Figure [4]. For network traffic, it is advised to look at log of latency [3] values instead
of raw values given the high variance and the log-skew nature of the latency distribution. Figure [5] shows logi¢
remote latency distribution. On initiating an HTTP request to an API gateway, predicting remote response latency

Count
Count

O 70 4000
4000 500 060
2000 250
0 20000 40000 0000 000 100000 120000 140000 ° 1 2 3 4 5 ’ Fast Normal Slow Crawl
Log of Latency in milliseconds logso of Latency Labels
Figure 4: Raw latency Figure 5: log; latency Figure 6: Label latency bins=4

enables efficient traffic shaping, Quality of Services (QoS) and resource allocation. We re-frame our target from a
regression to a classification problem. Instead of predicting a numerical value for remote latency, it is more useful
for API gateway resource allocation to predict a label based on an configurable histogram. The number of histogram
bins can represent traffic latency categories such as fast, normal, slow, crawl for a bin size of 4 as shown in Figure

[6].
4 Methods

Figure [7] shows two input representation methods, encoding and embedding that were the focus of this project. In
addition to Softmax classification output, we built a similar regression model for predicting log1¢ of remote latency.
Standard DNN techniques including Adam, L2 and dropout regularization were also explored. ReLU was used for
hidden layers. For Word2 Vec embedding, context window size, word vector length also served as hyper-parameters.

37 Input

Features E— . Hid_den Layers_ Soh:nax L . 9

Piotoed units=32, layers=4 c=4

Scheme

URL

Me'hOd) wordzvec > ’ 756hmax i y
Embedded units=32, layers=4 C=4

Figure 7: DNN for one-hot encoding and Word2Vec embedding

Figure [8] shows the LSTM sentiment model inspired by the Emojify-v2 assignment. The inputs are HTTP header

features that are converted word vector representation. The Softmax predicts the remote latency class: fast, normal,
slow, crawl.

— "o |9
= == N LSTM 2 —— =
Ed EN ED
— = >
Word2Vec Word2Vec Word2Vec Word2Vec
Embedded Embedded Embedded Embedded
t t t t
HTTP/1.1 POST www.acme.com 10.8.1.12

Figure 8: LSTM Sentiment Architecture
5 Experiments

To establish a base-line, we selected 17 input features and log; ¢ of remote latency as our output for a DNN-regression
model. We achieved R? = 0.80 with a 64-unit, 8-layer AP DNN (A = 5.0). Next, we focused on building DNN
models based on remote latency labels: fast, normal, slow, crawl.

5.1 API Request Header One-Hot Encoding

With the full HTTP header feature set as one-hot encoded input and no regularization, we could readily over fit our
data set. We used L2 regularization to close the gap between training and test accuracy values. The learning rate
a = 0.0005 was used in most one-hot encoding training runs. Higher learning rates would result in non-monotonic
gradient descent. We also experimented with various dropout rates from 0.2 to 0.8, however, we did not find any
significant advantages over using L2 regularization. As expected, reducing the number of features has a regularizing
effect, even when A = 0.

A=0)‘opti'mal
Features Train Test Train Test
37 0997 0.793 0.871 0.851 (A = 1.065)
17 0952 0.834 0.852 0.849 (A = 0.005)
8 0.847 0.846 0.846 0.846 (A =0)

Table 2: One-Hot-Encoding results with regularization

Table [2] shows that we have significant feature richness to over-fit our API DNN especially with feature counts of
17 and above. For feature count of 37, post L2 regularization, systems test accuracy compared to 17 features did not
improve significantly. We hypothesize that features that appear later in the HTTP headers are not standard across all
input headers, are sparse, and therefore perhaps have low sensitivity to the target. We anticipate API DNNs trained
with weeks or months of data, instead of ~ 45 minutes, will eventually increase sensitivity to deeper HTTP content.

5.2 API Request Header Embedding

With a large number of possible values for each feature, one-hot encoded vectors are sparsely populated and
provide no relationship between features within an HTTP header. However, unlike encoding, embedding provides a
relationship between features, see Figure [3].

Table [3] shows embedding accuracy results of a variety of word vector size setting, D. For 37 features, with a
corpus of ~ 20,000 HTTP headers, excluding rare occurrence words, we extracted a vocabulary of 5215 words. A
vector size, D = vocabulary'/* = 5125'/* ~ 9 is considered sufficient [8]. A promising result of this project is
that a dense representation of even D = 5 performs well. With D = 5 for 37 features, our dense-to-sparse ratio
of 185/19085 ~ 0.01 provides a significant advantage in representing HTTP request headers as dense embedded
vectors.

D=5 D =50 D =200
Features Train Test Train Test Train Test
37 0.841 0.845 0.849 0.847 0.822 0.821
17 0.840 0.835 0.851 0.842 0.835 0.832
8 0.844 0.845 0.845 0.847 0.845 0.846

Table 3: Embedding accuracy with varying features and vector size

Table [3] shows that even with A = 0, for embedded vectors, the testing and training accuracy values are closer than
one-hot-encoded vectors. With the same DNN architecture used for encoded inputs, a change to embedded inputs
seems to have a natural regularization effect. This is caused by a reduction in the number of input features when
moving from encoded to embedded representations, which retains information through its dense nature.

We also concatenated encoded and embedded as a composite input. The results were in between separate encoded
and embedded results as displayed in Table [2] and Table [3] and did not result in any significant advantage.

5.3 LSTM Sentiment Model

With Word2Vec embedded representation of HTTP headers, we assembled 8, 17 and 35 word sequences as inputs to
the LSTM model, Table [4]. The LSTM model predicts remote latency "sentiment" well, especially for low feature
count of 8. We expect that adding Attention Mechanism to the LSTM is probably necessary for higher feature
counts.

D=5 D =50 D =200
Features Train Test Train Test Train Test
37 0.827 0.834 0.821 0.822 0.828 0.835
17 0.823 0.824 0.823 0.824 0.821 0.822
8 0.833 0.828 0.834 0.839 0.833 0.835

Table 4: LSTM Sentiment Model Accuracy

5.4 Result Metrics

Table [5] shows accuracy metrics across a variety of models for 17 input features. While comparing encoding and
embedding performance, we kept the size and shape of the DNN constant (units = 32, layers = 4). Embedding
shows a natural regularization effect. It also reduces the size of the input features by a factor of 121 as shown in
Table [1], a promising result for API traffic. Table [6] shows the classification report for encoded inputs. As seen in

Model Hyper-parameters Train Test
Encoded-Regression A=5.0 0.81 0.79
Embedded-Regression A=0 0.81 0.80
Encoded-Classification A =0.005 0.85 0.85
Embedded-Classification A =0,D =5 0.84 0.84

LSTM latency Sentiment dr = 0.5,ep = 50 0.82 0.83

Table 5: Model Comparison
Figure [6], classes {0, 2, 3} are of the same scale and ~ 4 times smaller than class {1}. Even though class {0} has a
4x class imbalance compared to class {1}, its F-1 score is not impacted because of this imbalance. Adjusting for
class imbalance did not help our results. Class {2} which corresponds to remote latency label slow has the lowest
F-1 score. Further analysis is required to assess the poor performance of this class.

Class Precision Recall F-1

0 0.94 099 097
1 0.93 091 092
2 0.71 0.55 0.62
3 0.64 0.84 0.72

Table 6: Classification report for encoded inputs
n..- I C
° 2 19
- 1600
i n
-1200
o ; : 2 5
Predlcted Label Predicted Label -0 Predlcted Label

Figure 9: 1-hot encoding Figure 10: Word embedding Figure 11: LSTM Sentiment

.
.

Actual Label
Actual Label
Actual Label

The confusion matrices for one-hot encoded, Figure [9], embedded representations, Figure [10] and LSTM model.
Figure [11] show insignificant variation, giving us confidence in our models and methods.

ROC Curves ROC Curves ROC Curves

T Lk

X oy J

.:ﬁ\
<%
B

"‘

°
S

LEr
°
&

%

°
b
\,
°
by

True Positive Rate
\,

True Positive Rate

True Positive Rate

—— ROC curve of class 0 (area = 0.97)
—— ROC curve of class 1 (area = 0.90)
_#—— ROC curve of class 2 (area = 0.78)

ROC curve of class 3 (area = 0.93)
=+ micro-average ROC curve (area = 0.92)
=+ macro-average ROC curve (area = 0.90)

—— ROC curve of class 0 (area = 1.00) —— ROC curve of class 0 (area = 1.00)

— ROC curve of class 1 (area = 0.96) — ROC curve of class 1 (area = 0.96)

#—— ROC curve of class 2 (area = 0.91) ¢ —— ROC curve of class 2 (area = 0.91)

e ROC curve of class 3 (area = 0.96) ¥ ROC curve of class 3 (area = 0.95)
e = =+ micro-average ROC curve (area = 0.97) =+ micro-average ROC curve (area = 0.97)
=+ macro-average ROC curve (area = 0.96) = * macro-average ROC curve (area = 0.95)

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
False Positive Rate False Positive Rate False Positive Rate

Figure 12: 1-hot encoding Figure 13: Word embedding Figure 14: LSTM Sentiment
Although accuracy provides a single comparative metric, it hides details that are more evident in ROC-curves.
Figure [12], [13], and [14] show variations in class class {2} curves with LSTM sentiment model pointing to further
optimization opportunities.

6 Conclusion/Future Work

Performance of dense embedded word representation of HTTP headers without requiring L2 regularization has been
the most significant and valuable aspect of this project. White-listing a vocabulary of permissible HTTP header
is another practical advantage of deploying word embedding functionality in API gateways. With additional data
sets, we hope to extend API DNN research deeper into HTTP payloads, beyond HTTP headers and explore CNN,
Attention Mechanisms and GloVe techniques to predict remote latency characteristics based on an HTTP header
sequence.

7 Acknowledgement

This project has been exclusively developed by the author with valuable input from CS230 Mentor, Patrick Cho and
inspiration from CS230 course materials.

References

[1] Forum Sentry API Security Gateway: https://www.forumsys.com

[2] Guy Levin (2018) The Role of API Security Gateways in API Security DZone: https://dzone.com/articles/the-role-of-api-
gateways-in-api-security

[3] Artificial Intelligence and Machine Learning: A new Approach to API Security: https://www.pingidentity.com

[4] S. Zhang, B. Li, J. Li, M. Zhang and Y. Chen, "A Novel Anomaly Detection Approach for Mitigating Web-Based Attacks
Against Clouds," 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing, New York, NY, USA, 2015,
pp- 289-294.

[5] M. Zolotukhin, T. Himéldinen, T. Kokkonen and J. Siltanen, "Analysis of HTTP Requests for Anomaly Detection of Web
Attacks," 2014 IEEE 12th International Conference on Dependable, Autonomic and Secure Computing, Dalian, 2014, pp.
406-411. doi: 10.1109/DASC.2014.79

[6] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) On the log-normal distribution of network traffic. Physica D: Nonlinear
Phenomena 167(1-2):72-85.

[7]1 MacCormick, Chris (2016) Word2Vec Tutorial - The Skip-Gram Model
[8] Introducing TensorFlow Feature Columns, Monday, November 20, 2017, Posted by Tensorflow Team
[9] Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing, Internet Engineering Task Force (IETF), June 2014

Git Repository

Private: shared with project mentor, Patrick Cho. https://github.com/monogenics/deep-api

