Final report: Kaggle Human Protein Atlas

Pascal Pompey, Iason Solomos
Department of Computer Science
Stanford University
papompey@stanford.edu, isolomos@stanford.edu

Abstract

This project will focus on applying deep-learning to understand the basic building
block of the human body: proteins. Recent advances in medical imagery made
it possible to gather sufficiently large data-sets to enable the application of deep-
learning for protein recognition. This work will aim towards pushing the state of
the art for protein identification.

1 Introduction and related work

Proteins are the lego blocks based on which the human body is built. Understanding their distribution
and role is therefore critical to apprehending how our body functions. Recent advances in medical
imagery make it possible to gain further insights by collecting large amount of cell data annotated
with their proteins content in an attempt to use machine-learning to automate the annotation process.

A recent work applying deep-learning on medical images, Chexnet [8] has shown that it is possible
to reach excellent results on medical images by using transfer-learning from models trained on
real world images. Classification Models on real world images have progressed a lot recently and
contain a wealth of literature; this section will only focus on notable breakthroughs. AlexNet
[5] popularized Convolutional Neural Networks (CNNs). VggNets [9] introduced an appealing
architectural pattern for selecting the number of filters and their sizes. ResNets [2] enabled training
of very deep networks without suffering from exploding or vanishing gradients. InceptionNets [12]
combined many operations in order to find the optimal architecture. Finally DenseNets [3] are the
current state of the art for image classification on ImageNet [1].

2 Data-set and Problem Formulation

The data-set was provided by Kaggle [10] and comprises of 32k images with 512 x 512 resolution
and 4 channels (RGBY). Each image is annotated with a list of labels indicating which proteins
(amongst 28 protein types) are present in the image. It is therefore a classical multi-label classification
problem. The metric of the competition is the mean of the f; score over all proteins.

The image distribution is known to come from 27 different cell types of very different morphology. It
is also known that the proteins of interest are visible in the green channel while the other channels
expose different types of molecular structures in the cell.

Analysis of the labels: there are 28 possible protein types, however, as indicated in Fig[1], the
frequency of each image type varies a lot with some types being ubiquitous and others very rare.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Figure 1: Representation of different protein classes in the data-set. Some proteins are ubiquitous
while others are very rare. We observe an exponential decay in the frequency of proteins types.

Proteins present ['Nucleoplasm’, ‘Cytosol'] roteins present [‘Nucleoplasm', *Actin filaments'] Proteins

present [‘Focal adhesion sites’, ‘Plasma membrane’, ‘Cytosol']

Figure 2: Samples from the data: one immediate observation is that these images are significantly
different from that of ImageNet

Experimental setup The original labelled data-set from Kaggle was split into train, development
and test data-sets using a 90/5/5 split. On top of the labelled data, there also was a submission
data-set which consists only of images (no labels) and on which our models’ output was to be
computed in order to submit our prediction to Kaggle for grading. Prior to being used in our models,
all images were normalized. Two data augmentation techniques were applied to the images: (1)
horizontal and (2) vertical flip.

Hyper-parameters setup The Adam optimizer [4] was used to train the model. We found that the
standard parameters used for training resnets performed best: Ir = 1073, 51 = 0.9, B = 0.999,
and € = 1078, When possible, parameters were fully transferred from the resnet18 model from
torch-vision [7], which was pre-trained on the ImageNet data-set [1]. A batch size of 8 was found to
maximize GPU efficiency without slowing learning convergence.

3 Transfer-Learning: Adapting Networks from ImageNet

From multi-class to multi-label classification: Some modifications were required to adapt the
original ImageNet architecture (which is a 1000 classes multi-class classification problem) to the
28 labels multi-label classification problem of this project. (1) The last fully connected layer was
replaced to predict 28 labels and not 1000 classes. (2) The 28 outputs of the last connected layer
were fed into a sigmoid representing the probability of the given protein to be in the image. (3) The
loss optimized was changed from the Cross-Entropy loss to the Binary Cross Entropy loss (BCE)
between the sigmoid’s output and a multi-hot encoding of the true labels. Binary cross entropy has
the advantage of handling each labels’ prediction independently.

Freeze or retrain: Freezing the model except the last layer yielded f; scores of 0.2 (vs. 0.8 for
the retrained version) on the training set and 0.05 (vs. 0.3) on the test set. This indicates the frozen
version was unable to over-fit the training set and therefore suffered from a high bias problem. This
can be explained by the fact that protein images form a very different manifold of images than that
covered by real-world images; as is abundantly apparent when looking at pictures of Fig[1]. Therefore
retraining deep-features in the deeper layers of the network is necessary.

Adapting the image size: The model also needed to be adapted to the 512 x 512 resolution of
images in this project (as opposed to the 256 ><2256 resolution of the ImageNet data-set). Four

Loss on train set Loss on test set

=4 o o
o = =
a 5 «
o o o
= = =
N IS o

Mean of f1 scores across all proteins on train set Mean of f1 scores across all proteins on test set

0.8

0.6

0.4

0.2

0.0 —— DownSample_256 0.0 —— DownSample_256
20 30 40 —— AvgPool_512 0 10 20 30 40 —— AvgPool_512
Number of epochs —— Add2Layers_512 Number of epochs —— Add2Layers_512

o o o o
S I VIS

°
=
°

Figure 3: Performance of different techniques to adapt a Resnet18 to a 512 x 512 image resolution
using an RGB model with BCE loss. Method (3), which does an average pooling before the fully
connected layer outperforms the two other methods. Adding 2 more layers (Method(4)) seems to
lower overfitting. The AvgPool method presents strong overfitting.

methods were experimented with. (1) Change the size of the last fully connected layer to take the new
size coming out of the convolutional layers when applied to the new image size. (2) Downsize the
original (512 x 512) image to images of size 256 x 256 before passing it through the network. (3) Add
an adaptive pooling layer right after the last convolutional layer to average its results and downsize
them to the usual input size for the fully connected layer. (4) Append additional residual layers which
will reduce the image size and increase the number of filters Method (1) did not converge. Results for
methods (2), (3), and (4) are presented in Fig.[3].

Adding the Yellow channel: To add the yellow channel, we simply modified the first convolution
layer of the resnet model to take a fourth channel. The yellow channel was Xavier [13] initialized
while the RGB channels were transferred learned from the ImageNet [1] Resnet model. In our
experiments adding the yellow channel to the network did not yield much improvements.

4 Handling class imbalance

The key challenge of this competition is class imbalance. Fig[1] shows the strong exponential decay
in labels frequencies: most of the proteins types are very rare and present an imbalance of more than
1 in 10. The usual method for handling class imbalance is to weight the loss more for samples with
high information content w.r.t rare labels. The weights, however, must be carefully chosen. Indeed,
multiplying the loss by a factor « is the exact mathematical equivalent of modifying the step-size
in the SGD optimization step by a. The step size is known to be a crucial hyper-parameter and
modifying it carelessly can easily lead to divergence or slow convergence. As slow convergence is
preferable to divergence, we required our weights to be strictly in the [0, 1] interval.

Weighted BCE: The first weighting scheme to be applied was to weight each label by its rarity.
If a label [had frequency f;, the BCE loss coming from the neuron responsible for that label was
weighted by 1 — fj, the probability of the label not to be present.

Focal Loss: One elegant method for choosing the weight for handling class imbalance is the Focal
Loss [6]. We define focal loss as:

Focal_Loss(y",9) = [y"-9 + (1 —y").(1 = 9)]” BCE(y", 9)

where y* is the one hot encoded true label, 3 is the logit predicted by the network, +y is a positive
integer and bce(.) is the binary cross entropy loss (following in [6], we chose v = 2). This definition
is mathematically equivalent to that of the original paper [6] but explicitly exposes the focal-loss as
being in essence the same formula as the bce, just without the logarithms.

Loss on train set Loss on test set
0.175

0.15 0.150
0.125 4
0.10 4

0.100 -

0.075 4

0.05
\H LU T N g

Mean of f1 scores across all proteins on train set Mean of f1 scores across all proteins on test set

0.8
03

06
024

0.4

0.2 01

0.0 — bee 0.0 — bce

0 10 20 30 40 5(— bce_weighted 0 10 20 30 40 5(— bce_weighted
Number of epochs — focal_loss | Number of epochs — focal_loss

Figure 4: Performance of a resnetl8 depending on the weighting scheme applied to the loss. The
weighted BCE method seems to perform best and speeds ups learning without being detrimental to
its quality. The BCE vanilla and the focal loss eventually reach a similar performance.

Nucleoli: Evolution of model's KPIs depending on threshold choice ndoplasmic reticulum: Evolution of model's KPIs depending on threshold cho

—— Precision
—— Recall
q|=— f_1_score

o
o

o
«

o
B

0.70

o
w

Model KPIs for label Nucleoli

o
N

0.60 -
—— Precision

Recall

Model KPIs for label Endoplasmic reticulum

0.55 4 —— f_1_score

o
-

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold on model Threshold on model

Figure 5: Metrics graphs on the validation set: precision improves with a higher threshold while the
recall diminishes. Choosing a threshold different from 0.5 is beneficial for rare proteins.

The better loss: Fig[4] shows the comparison of the different weighting schemes explored in this
work. While the weighted BCE speeds up learning, none of the weighting schemes improves the
model’s performance at convergence. The team suspects that this is due to the BCE loss already
having some non linear weighting built in. The log terms in the BCE loss already enforce that large
mistakes on the model’s part will be more strongly penalized. That built in penalization is exponential
in the model’s own error. The team suspects that the effect of multiplying the loss linearly is dwarfed
by the BCE’s built in log term, and therefore, of limited use.

S Hyper-parameter tuning and error analysis

Classification Threshold: Using sigmoid with the binary-cross-entropy loss, a question still re-
mains open after training a model: which threshold value shall be chosen to separate the positives
from the negatives examples. Fig.[5] shows that choosing a threshold different from 0.5 can be bene-
ficial, especially for rare proteins, where choosing a lower threshold enables to give more emphasis
to recall as opposed to precision. As the threshold value is an hyper-parameter, all the metrics were
calculated applying the model to the validation set. This simple trick enabled the team to bump its
test set f1 score from 0.43 to 0.53; yielding a significant 0.1 improvement. Fig[6a] shows the gains
achieved per label by tuning the threshlod hyper-parameter.

Error analysis: Despite it being very difficult to make anything of protein pictures with an untrained
eye, one pattern soon became clearly visible: the lowest f1-scores were reached on rare protein types.

Test set F1 score difference between an optimal and a default threshold Achieved test-set f_score as a function of protein frequency

—— Optimal f_score 104 X X Optimal validation threshold

|

0.7 1 Default f_score ® Default Threshold (.5)
0.6 1 0.8 é
0.5 -] ¢

0.6 4
0.4

°
0.3 4 0.4
A |

0.2 °

0.24
01 | \‘

| °
0.0 \ 00{ ®
0 5 10 15 20 25

0.0 0.1 0.2 0.3 0.4
Label index (1 to 28) Frequency of protein

protein
L]
ox .‘ X
X ¢
o
ox &
®x

F_score for label
x X
o x ¢
X @x ..

Test-set f_score for

o°

(a) Test set variation of the F1 Score depending on (b) In general the higher the frequency, the higher
the threshold selected on the validation set. the f1 score.

Figure 6

Fig.[6b] illustrates this clearly. There is a marked inflection point once a protein type is present in
less than 5% of the images from which the model performance can degrade spectacularly.

This is a remarkable difference between multi-label and multi-class classification problems: in multi-
class problems, every image in the set provides information about one class and the cross-entropy
loss ensures that knowledge is spread out to all the other classes. Multi-label classification on the
other hand, is more of a multi-task learning problem where all labels are co-trained but each is still
handled completely independently from a loss perspective. Therefore, labels with very rare positive
cases can be subject to learning starvation if their learning task doesn’t correlate with that of other
more frequent labels. Fig[6b] indicates that some of the very rare labels do benefit from co-training
with more frequent labels and reach f; scores that are equivalent or higher than the frequent labels
despite very strong data-imbalance. Using multi-task learning makes sense for these cases.

But for the other rare labels, using the whole data-set in a multi-task learning setting is actually
detrimental: these labels do not benefit enough from co-training with other labels to compensate for
their structural class imbalance. For these labels it would probably be beneficial to define a dedicated
learning problem and train a dedicated model on a sub-sample of the original data-set constructed in
a way that corrects the data imbalance.

6 Conclusion and Future work

This work focused on identifying the most promising architecture for solving the Kaggle Human
Protein atlas multi-label classification challenge [10]. Multiple architectures were trained using
ResNet18 [2] as base model and it was found that using Average Pooling with a weighted BC'E loss
on 512 resolution RGB images was the best setup.

Subsequent optimization of the threshold used to separate positive from negative cases enabled to
further increase our f; score from .43 to .53 on the test set, which is competitive with current Kaggle
submissions despite it still being based on a simple Resnet18 model.

Finally a closer analysis of the link between class frequencies and the model’s f; metrics sparked a
discussion whether multi-task learning is detrimental for some rare protein labels.

Future work will focus on rare labels that still perform poorly. The team would let go with
multitask-learning and each label will have its own dedicated binary classification problem and model.
In this setup class imbalance can be handled by sub-sampling the training data in a way that enforce
at least 20% of the samples contain the target label. The positive data-points could also be subjected
to more aggressive data-augmentation in an effort to generate less imbalanced training sets.

Now that the core architectural questions have been answered, the team is also keen on experimenting
with more advanced models like ResNet31 [2], DenseNets [3], or Inception ResNets [11].

7 Contributions

Pascal contributed the AWS setup for training models, the implementation in Pytorch [7], data
pre-processing, the various resNet18 architectures, the training and evaluation routines, along with
the utilities for computing multi-label metrics, storing model training histories, and generate relevant
train/validation/tests graphs. Pascal also conducted the experimental methodology and result analysis.
Pascal also wrote the core of the milestone report, final report and poster.

Tason contributed the Microsoft Azure setup for training models as well as the DenseNet implementa-
tion.

Our code is on https://github.com/PascalPompey/cs230_human_protein_atlas, this
repository will be made public once the Kaggle competitions finishes on the 10*" of January 2019.

Acknowledgments

We would like to thank Ahmadreza Momeni for his constant guidance and useful feedback throughout
the project. We would also like to thank AWS Educate for the AWS credits without which carrying
the amount of experiments needed for this work would have not been financially viable.

References

[1] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. Imagenet: A large-scale
hierarchical image database. In In CVPR, 2009.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[3] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems, 2012.

[6] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollér. Focal loss for
dense object detection. CoRR, abs/1708.02002, 2017.

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[8] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy
Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, Matthew P. Lungren, and Andrew Y. Ng.
Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. CoRR,
abs/1711.05225, 2017.

[9] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[10] Devin P. Sullivan, Casper F. Winsnes, Lovisa Akesson, Martin Hjelmare, Mikaela Wiking,
Rutger Schutten, Linzi Campbell, Hjalti Leifsson, Scott Rhodes, Andie Nordgren, Kevin Smith,
Bernard Revaz, Bergur Finnbogason, Attila Szantner, and Emma Lundberg. Deep learning is
combined with massive-scale citizen science to improve large-scale image classification. Nature
Biotechnology, 36:820 EP —, Aug 2018.

[11] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, inception-resnet and
the impact of residual connections on learning. CoRR, abs/1602.07261, 2016.

[12] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014.

[13] Yee Whye Teh and D. Mike Titterington, editors. Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort,
Sardinia, Italy, May 13-15, 2010, volume 9 of JMLR Proceedings. JMLR.org, 2010.

