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Abstract

In Semiconductor industry, increase in wafer inspection throughput gives better
cost of ownership for our customers. Traditionally our wafer inspection systems
are a 2-Pass system where we inspect in lower resolution(LR) at a faster rate and
the identified defect candidates are re-captured at a higher resolution(HR) which
is an inevitable throughput killer. Towards removing the process of recapturing
HR images, we present a solution that combines SRGAN and Neural Style
transfer by providing references with a HR Golden Image(HRGI) generated
during initial setup. We have designed an end to end trainable deep learning
model that can generate the HR image with the defect from both LR image and
the HRGI.

Introduction:

Wafer defect inspection system detects physical defects (foreign substances called particles) and pattern
defects on wafers and obtains the position coordinates (X, Y) of the defects. Defects can be classified
into random defects and systematic defects. Random defects are mainly caused by particles that become
attached to a wafer surface, so their positions cannot be predicted. On the other hand, systematic
defects are caused by the conditions of the mask and exposure process. In some cases, even if there is a
valid defect on the wafer, it may not be of importance for the customer and hence will not affect the yield.
As a result, it is very important for the customer to manually review all the defects to find out which are
the Defects of Interest(DOI) and which are nuisances. Since the size of the defects are in the order of
microns and end user needs HR images to validate whether it is a DOI or nuisance and fix the process to
increase the yield.

v‘ / Device wafer ( x y)

Light
beam™—

YV

£ of— Defect
(3): Difference Image of (2) - (1) X

Figure 1. Silicon Wafer Figure 2. Defective map after inspection




In this project, we try to develop a deep learning model to create HR image (contains defect) without
doing a second pass recapture as mentioned before.

2. Related Works

In recent years, deep learning based Single Image Super Resolution(SISR) has shown superior performance
in visual quality compared to those non-deep-learning based methods [1][2][3]. After googling our
problem statement, we found a research paper “Reference-Conditioned Super-Resolution by Neural
Texture Transfer(SRNTT)” [4] that closely matched with what we were looking for. It adaptively transfers
textures to the generated Super Resolution image conditioned on the reference image. In our case, we
would like to extract and transfer the anomalies from the lower resolution to the higher resolution image
using a reference HR Golden Image(HRGI)which doesn’t contain the anomaly.

The actual source code for the network model was not made public and we tried to replicate most part of
the model based on the details provided on the research paper. But due to the lack of details in the paper
about some parts of the model, in particular, patch matching and texture swapping, we could not make
the model working. So, instead, we then focus our project on a model based on the paper “Photo-Realistic
Single Image Super-Resolution Using a Generative Adversarial Network (SRGAN)” [5].

3. Data Set

We used three different data sets.

1. We downloaded the dataset “Yahoo MirFlickr25K” to train with the SRGAN to get an
understanding how Super Resolution model works. SRGAN network we used needed a minimum
size of 384x384 pixels. We preprocessed the data to filter the images of the required size and used
approx. 3500 images for training the model. 3300 images were used for training and 100 images
each were used for Dev and Test. This was done for the mid-term milestone.

Figure 3. Yahoo MirFlickr25K sample data

2. We collected 1000 images related to our Standard Silicon Wafer referred to as “Standard Wafer
Dataset” (SWD) going forward. Collected 500 images of (64x64) LR images using 4 microns/pixel
(1/p) using our Wafer inspection systems. We also collected the 500 (256x256) HR images using
1 (u/p) at the same locations. We split the data 460 images each for LR and HR for the training
and 20i |mages each for dev and test




| Figure 4. SWD sample images

3. We also collected 200 HR images and 200 LR images on the customer data. We used 180 images
each for LR and HR for training and 20 ima

ges each for dev and test.
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4. Network Model

The architecture of the model of SRNTT [4] is shown in Figure 6. This is a complex model and we
replicated a portion of the model as part of mid-term milestone for some of the modules. Since
there are not enough details in the paper for some of the modules such as patch matching and
texture swapping, we couldn’t make the model working. We list them here for the completeness
of the project since it part of our study process.
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Figure 6. Overall structure of SRNTT




Content Extractor:

Conditional texture Transfer

# Layer name(s) Output size # Layer name(s) Output size
0 Input HxW x3 Mc: Hx W x 64
1 Conv, ReLU Hx W x 64 Input Mt: H x W x 256
Residual blocks (Conv,BN, Concatenate Hx W x 320
2-17 ReLU, Conv, BN) HxW x 64 Conv, ReLU Hx W x 64
18 | Conv, BN HxW x 64 Residual blocks (Conv,BN,
19 #1 + #18 Mc: Hx W x 64 3-18 ReLU, Conv, BN) Hx W x 64
19 Conv, BN HxW x 64
20 Mc + #19 HxW x 64
Upsample Discriminator
# Layer name(s) Output size # Layer name(s) Output size
0 Input Hx W x 64 0 Input IR or ISR: 160x160x3
1 Conv H x W x 256 1 Conv, BN, LRelLU 160 x 160 x 32
2 Sub-pixcel, ReLU 2H x 2W x 64 2 Conv, BN, LReLU 80 x 80 x 32
3 Conv 2H x 2W x 256 3 Conv, BN, LReLU 80 x 80 x 64
4 Sub-pixcel, ReLU 4H x 4W x 64 4 Conv, BN, LReLU 40 x 40 x 64
ISR : 4H x 4W x 5 | Conv, BN, LReLU 40 x 40 x 128
2 Con; tant g 6 | Conv, BN, LReLU 20 x 20 x 128
7 Conv, BN, LReLU 20 x 20 x 256
8 Conv, BN, LRelLU 10 x 10 x 256
9 Conv, BN, LRelLU 10 x 10 x 512
10 Conv, BN, LRelLU 5x5x512
11 Flatten 12800
12 FC, LReLU 1024
13 FC 1

The loss function of the SRGAN [5] model we used is defined as:

PP = IR+ 10788,
~ | p———
content loss  adversarial losi

perceptual loss (for VGG based content losses)

Where is the content loss function contains two parts, MSE loss and VGG loss, which are defined as the
following :
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The adversarial loss function is defined for the whole training samples as:
N

lg‘fn = Z - log D9D (ch([m))

n=1

5. Training

In initial training, we just tried with SRGAN to start with and we were amazed by the results. We
did not have enough time to completely replicate the SRNTT network as per the reference paper.
So, we continued to use SRGAN for our project. The LR images are obtained through our
inspection systems are of the size 64 x 64. The corresponding reference is fed with the HR size,
256x256.

Training was performed on “Yahoo MirFlickr25K” for a total of 2000 epochs with a mini-batch of
16 using the Adam optimization algorithm. A learning rate of 1e® was used for the first 100
epochs, and the learning rate is decayed by 0.1 for each 100 epochs. Weights were initialized
with random normal distribution initializer with standard deviation 0.02. From SWD dataset we
added 460 images each of LR and HR and added it to the training set and initialized the network
weights from the previous training. We trained for a total of 200 epochs with the additional input
data. Further we added the customer data set images to the training set and trained the model
for additional 200 epochs

6. Results and Remarks

After the first training with Yahoo Flickr data, we could generate HR images from the LR images.
we evaluated the model with the SWD data set and customer data set to see the results. It
worked very well on the customer data even though it did not see the images as part of the
training data set whereas SWD data set performed very poorly which we can see from the images
below. We further trained the network by adding input images from both the data set we could
get very good HR images. Initially the network performed well on the test data generating the HR
images for the test LR images. We got excited and collected 100 more images at a different
location of the wafer but the result was totally wrong. The images we originally collected were
from a location that only covered portions of the die and the network performed well only on
those images from that portions of the die. We collected 200 more images that covered all the
die locations and then retrained the network to get a better result.



Figure 8. SWD data(bottom) and customer data (top). Customer data evaluated on a
trained model containing SWD only. We could see the SWD style on customer images.
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Figure 9. Customer data(top) and SWD (bottom) is generated using SRGAN

We started with the goal of using a deep learning model to work for different types of wafers.
With this current approach, we must retrain the network for different type of wafers. We still
believe that SRNTT [4] will help us achieve our goal and we will continue to work on the model
which we shelved after mid-term milestone due to time constraints.
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