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EFFICIENT NEURAL NETWORK IMPLEMENTATION OF THE UNIVERSEMACHINE
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ABSTRACT

The UNIVERSEMACHINE (UM; Behroozi et al. 2018) is a cosmological model that links dark matter (traced by dark matter halos) to
luminous matter (traced by galaxies). This model is massively parallel and takes over 10° CPU hours to optimize based on the observed
abundance and properties of galaxies derived from various surveys. Herein we explore an efficient implementation of the optimized UM model
by using a random forest to identify key halo features and a deep convolutional residual network (ResNet) to learn the mapping from simulated
halo distributions to observed galaxy distributions. Our ResNet accurately reproduces the abundance of galaxies as a function of stellar mass as
predicted by UM and runs in a small fraction of the time, and our feature importance exploration highlights the most key aspects of the halo-to-
galaxy mapping. We comment on several extensions of our deep learning model for future work. Our code is available at github.com/chto/umml.
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1. INTRODUCTION AND RELATED WORK

One of the key challenges in cosmology is understand-
ing the connection between luminous matter and dark matter
over a wide range of lengthscales. This is a difficult problem
on small scales due to our ignorance of the particle nature of
dark matter, but the problem becomes simple on cosmologi-
cal scales (i.e., lengthscales larger than about one megaparsec
— 1 Mpc = 10?> m). In this limit, luminous matter is traced
by galaxies, which we observe according to their total stellar
mass M, and redshift (a proxy for their distance from us),
while dark matter is traced by halos, which are also defined
by their mass (M) and redshift. In standard cosmological
models, all galaxies reside in dark matter halos; thus, under-
standing the relationship between luminous matter and dark
matter boils down to understanding the connection between
galaxies and halos, and specifically the M.—M), relation.

A simplified version of the standard method for constrain-
ing the M,.—M),, relation proceeds as follows:

1. Measure the number density of galaxies as a function
of M, (¢., referred to as the stellar mass function or
SMF) in a galaxy survey;

2. Model the number of dark matter halos as a function
of M}, using a cosmological simulation;

3. Assign galaxies to halos using a particular M,.—M,, re-
lation, and fit this relation to the observed SMF.

Several authors (e.g., Behroozi et al. 2013) have constrained
the galaxy—halo connection in this way, and Behroozi et al.
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Figure 1. Visualization of the UNIVERSEMACHINE mapping cap-
tured by our deep learning model. Dark matter halos from a cosmo-
logical simulation are mapped to galaxies, and this mapping is op-
timized based on the observed abundance and properties of galaxy
populations from various surveys.

(2018) recently presented the UNIVERSEMACHINE (UM), a for-
ward model that predicts galaxy population statistics from simu-
lated dark matter halo populations and constrains the galaxy—halo
connection using a variety of observational data. Unfortunately, UM
is computationally expensive; Behroozi et al. (2018) run 4 million
Markov Chain Monte Carlo steps for 2.4 million CPU hours to op-
timize their model. In addition, UM assumes a specific form for the
mapping between galaxies and halos, limiting its generality.

Herein we explore the optimized UM model using a random for-
est (RF) to extract relevant halo features and a deep convolutional
residual neural network (ResNet) to learn the halo-to-galaxy map-
ping predicted by UM. The advantages of applying deep learning to
this problem are twofold: a ResNet trained to reproduce UM out-
put provides a faster implementation of the model, allowing effi-
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cient querying; in addition, our method is not limited to a particular
model for the galaxy—halo connection, meaning that our ResNet can
potentially learn this mapping rather than determining the best-fit
results for a given model.

2. DATASET AND FEATURES

We use dark matter halo catalogs from the Bolshoi-Planck simu-
lation (Klypin et al. 2016), which tracks the evolution of = 10'® dark
matter particles, each of mass 108 M (solar masses), in a cubic box
of side length 250 A~' Mpc that represents the expanding universe.'
These catalogs contain the 3D position (x,y,z) and a variety of in-
ternal properties for each halo (e.g., mass, size, spin, etc.) as well as
the relationships between halos at different snapshots. The halo-to-
galaxy mapping underlying UM only explicitly depends on the peak
circular velocity Vyeax of dark matter halos, which is a numerically
stable mass proxy, although other halo features enter the mapping
implicitly. We explore optimal feature selection in Section 3.1.

We find ~ 107 halos at the final snapshot of the Bolshoi-Planck
simulation. We discard all halos with Vpeax < 150 km s to ensure
that we study well-resolved objects and for computational efficiency
while prototyping our network. This cut results in ~ 2 x 10° halos
in our fiducial dataset.

The UM data we employ are provided by Behroozi et al. (2018)
at peterbehroozi.com/data.html. In particular, we use the UM pre-
diction for the galaxies that inhabit the simulated dark matter halos
described above. The abundance and properties of these galaxies
match measurements from the PRIMUS survey (Moustakas et al.
2013); for example, the SMF ¢..(M.) represents the number den-
sity of predicted galaxies in units of 4> Mpc™ dex !, and it is tuned
to match the observed SMF in 0.1 dex logarithmic stellar mass bins
from M. = 10° A2 Mg to M. = 10" h™> M. We incorporate the co-
variance of these binned SMF predictions, which is estimated from
the observational data, into the training of our ResNet model.

3. METHODS
3.1. Random Forest Model

To determine the most relevant halo feature(s) for learning the
UM model and to benchmark our ResNet results against a simple
algorithm, we train a RF to learn the mapping from the internal
features of dark matter halos to the stellar masses of the galaxies
that reside within these halos. In particular, we train a RF on 80%
of the halos described above using the eight halo features listed in
Figure 3 and the galaxy stellar mass labels predicted by UM. We use
the Scikit-Learn package to implement our RF, and we use the
GridSearchCV module to optimize over RF hyperparameters and
select the ones that yield the highest out-of-bag (OOB) classification
score averaged over 5 cross-validation folds of the training data.
These hyperparameters include the number of decision trees, the
depth of each tree, and the maximum number of features used at
each decision tree split. Our qualitative results are not sensitive to
the values of these hyperparameters.

1 11 is a cosmological parameter which is fixed at 0.678 to match the sim-
ulations used in this work.
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Figure 2. Galaxy masses predicted by our random forest versus
the true galaxy masses predicted by UNIVERSEMACHINE for dark
matter halos in our test set. The predicted values are indicated by
shaded hexagons, with darker colors corresponding to higher num-
ber densities. Our RF accurately captures the mean UM halo-to-
galaxy mass relation and the expected ~ 0.2 dex of scatter in M pred
at fixed M qrue.

To test whether our RF accurately captures the UM halo-to-galaxy
mapping, we plot the predicted galaxy mass corresponding to each
halo as a function of the UM-predicted galaxy mass in Figure 2. The
RF predictions are centered around the mean UM-predicted masses,
and the scatter in the RF predictions is consistent with the expected
~ (.2 dex scatter in the underlying galaxy—halo connection for these
systems. Thus, our RF provides a relatively accurate version of the
UM model that we will use to benchmark our ResNet results.

Figure 3 shows the relative feature importances obtained from our
RF (i.e., the feature importances normalized by the highest feature
importance score). As expected, Vpeax dominates the feature impor-
tances, since this is the only halo feature that explicitly enters the UM
model; however, the fact that the remaining feature importances are
nonzero shows that these secondary halo properties correlate with
the galaxy properties predicted by UM. Because Vpeax dominates the
galaxy-to-halo mapping, we base our ResNet on this feature as de-
scribed in the next section.

3.2. Deep Learning Model

We now describe our deep convolutional ResNet, which is based
on the ResNet18 model.” To process the halo data into a suitable
form for our ResNet, we slice the (250 /™ Mpc)3 simulation box

2 download.pytorch.org/models/resnet18-5¢106cde.pth
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Figure 3. Feature importances normalized by the highest score
among all features for our random forest trained on the halo-to-
galaxy mapping predicted by UM. In descending order, the features
represent dark matter halo peak circular velocity evaluated at two
different times, formation time, spin, mass evaluated at three differ-
ent times, and whether the halo lives inside of a larger halo. Vpeax is
the most important halo property in the halo-to-galaxy mapping.

into 10* sub-boxes of side length 25 &~ Mpc, and we segment each
sub-box into 25 contiguous sub-volumes; this procedure typically
yields at least one halo per sub-volume. We then assign each of
these sub-volumes a value corresponding to the mean Vpeax of the
halos in that region.

We illustrate our fiducial architecture in Figure 4. We use several
3 x 3 filter-size 3D convolutional layers with stride s = 2, each of
which is followed by a batch normalization operation and a fully-
connected layer that uses a ReLu activation function. After prepro-
cessing the data in this way and max-pooling the results, we imple-
ment three layers, each of which consists of two convolution-batch
normalization-ReLu operations with a residual connection. The
two subsequent fully-connected layers use ReLu activations with
dropout, and the final layer uses a linear activation function since
we are predicting a continuous-valued quantity.

Before detailing our optimization procedure, we outline our gen-
eral strategy:

1. For a given sub-box, feed the segmented V. values into a
ResNet that outputs ¢. (M) in 14 discrete M. bins;

2. Train on 80% of the sub-boxes from Bolshoi-Planck using
a x* likelihood with a mean set by the UM-predicted SMF
in that sub-box and a covariance set by the Moustakas et al.
(2013) measurements in each M.. bin;

3. Validate using the remaining sub-boxes and by comparing
the results to the RF and UM-predicted SMFs.

We implement our ResNet using PyTorch (Paszke et al. 2017).
To train the network, we define the % loss function

_ 1 1 obs pred\7 -1 obs pred
L= 5 — g D (ogl—log o1 ¥ (log 6277 ~ log 117,
$))

boxes i

where Npins = 14 is the number of M. bins (evenly spaced logarith-
mically), 2% (¢7) are 14 x 1 vectors that represent the “observed"
(i.e., UM-predicted) and ResNet-predicted SMF in sub-box i, and
7! is the covariance matrix of the observed SMF, which we take
to be diagonal with entries given by the Gaussian errors reported in
Moustakas et al. (2013). Note that this loss function is simply a x>
test for the likelihood of our predicted SMF values given the null
hypothesis of a normally distributed SMF about the UM-predicted
mean in each sub-box. We train on Nyoxes = 800 sub-boxes, reserv-
ing 200 sub-boxes for our validation set.’

We train our model for 15 epochs using the PyTorch implemen-
tation of the Adam optimizer (Kingma & Ba 2014) with the follow-
ing hyperparameters: a minibatch size of 32 sub-boxes and a hand-
tuned learning rate of 107" for the first 10 epochs and 107 for the
remaining 5 epochs. These hyperparameters were chosen manually
by inspecting the behavior of the loss function.

In addition, we optimize several aspects of our architecture; for
example, the network used in our milestone implemented 2D con-
volutions, which resulted in biased predictions using our updated
loss function. We find that 3D convolutions result in less biased
predictions and smaller characteristic values of £ on both the train-
ing and test sets, which is reassuring because the simulated dark
matter halo distribution is inherently three-dimensional. The num-
ber of convolutional channels is a free parameter in our framework,
and we scanned over values from Nchannels = 20 t0 Nchannets = 200 by
calculating the average loss on the validation set; as expected, we
find that increasing Nchanneis results in a smaller loss, and we use
Nchannets = 200 for the results presented below.*

4. RESULTS AND DISCUSSION

In Figure 5, we plot the training and cross-validation loss as a
function of training epoch. Although the magnitude of our valida-
tion loss is somewhat large when interpreted as a x” statistic, the
training and validation loss steadily decrease until training epoch 5,
after which they plateau. However, we note that these loss values are
significantly smaller than those reported in the milestone due to the
increased complexity of our network. Note that we decreased the
learning rate after 10 training epochs because we observed that the
predicted SMF simply fluctuated about its mean value when training
past 10 epochs with a constant learning rate.

To assess our predicted SMF, we compare our ResNet output to
the UM result and to our RF prediction. Table 1 lists the values of
the x” loss averaged over validation sub-boxes for our ResNet and
RF models; the limiting SMF values obtained by our ResNet are
clearly significantly closer to the mean UM values. Figure 6 illus-
trates the SMF for these validation sub-boxes; the errorbars on the
RF and ResNet predictions represent 1o scatter about the mean pre-
dictions. We observe that the ResNet-predicted SMF matches the
UM prediction at all galaxy masses and outperforms the RF both in

3 We do not distinguish between validation and test sets because of the
limited number of available sub-boxes. We hope to treat this issue more
carefully in future work based on a larger number of simulations.

4 The average begins to plateau around Ngpannets = 100; see Table 1.
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Figure 4. Illustration of the architecture for our convolutional ResNet model. The input distribution of dark matter halos corresponds to
Nminibateh = 32 sub-boxes, each of volume (25 ! Mpc)3; for each minibatch, the output corresponds to a galaxy population described by a

14 x 1 stellar mass function (i.e., the number density of galaxies in 14 logarithmically spaced bins of galaxy mass).

RF | ResNet (N =20) | ResNet (N =100) | ResNet (N = 200)

272 135 93 84

Table 1. Average x° loss (Equation 1) over validation sub-boxes for
our RF and our ResNet with N =20, 100, and 200 channels.

terms of smaller mean errors and smaller uncertainties. This is an
encouraging result, since our ResNet trains and makes predictions
in a small fraction of the time it takes UM to perform these tasks.

The physical implications of this result are also interesting: our
ResNet is trained using the mean Vjeax values of the halos in each
sub-volume, while our RF utilizes all available internal halo prop-
erties. However, the 3D convolutions implemented by our ResNet
capture spatial correlations among the Vpeax values of the simulated
halos, which in turn encode information about the galaxies that re-
side in these halos, leading to a more accurate prediction. Finally,
we reiterate that the UM prediction is tuned to match the observed
number density of galaxies in the range plotted in Figure 6, mean-
ing that our ResNet has learned how to map simulated dark matter
halo populations to galaxy populations that are consistent with those
found in actual survey data.

5. FUTURE WORK

We plan to generalize our model by using all internal halo proper-
ties (rather than just Vpeax) as input features; although our feature se-
lection exploration in Section 3.1 suggests that this will only yield a
modest improvement, it is possible that our ResNet will capture ad-
ditional correlations among internal halo features that lead to more
accurate galaxy population predictions. We also plan to generalize
our network’s output as follows: i) predict and jointly fit to both the
SMF and the remainder of the observables predicted by UM (namely,
star formation rates and the fraction of non star-forming galaxies in
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Figure 5. x> loss function (Equation 1) averaged over 800 train-
ing sub-boxes (light blue) and 200 validation sub-boxes (dark blue)
versus training epoch. Note that we decreased the learning rate af-
ter 10 training epochs for stability. Both quantities decrease during
the first ~ 5 training epochs and then plateau, indicating that our
ResNet is learning the halo-to-galaxy mapping.

a given population) at a fixed simulation snapshot; ii) predict ob-
servables as a function of time using multiple simulation snapshots.

In addition, we plan to test how our model generalizes to inde-
pendent simulations and galaxy populations. For example, is the
halo-to-galaxy mapping learned by our ResNet general enough to
predict realistic galaxy populations from simulations that differ in
detail from Bolshoi-Planck (e.g., in simulation size)? Can its pre-
dictions be extrapolated beyond the Vieax values of the dark matter
halos in the training set? Finally, we note that in a more sophis-
ticated treatment it might be necessary to impose physical priors
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Figure 6. Stellar mass function predicted by the UNIVERSEMACHINE (gray dashed line), our ResNet (blue triangles and errorbars), and our
RF (red circles and errorbars) for sub-boxes in our validation set. The errorbars on the ResNet and RF predictions indicate 1o scatter about the
mean prediction averaged over the validation set. Our ResNet prediction matches the mean UM SMF accurately and predicts galaxy populations
with smaller scatter than our RF. Note that the SMF does not increase monotonically for smaller galaxies because of our halo resolution cut.

on the smoothness and absolute values of the ResNet output. For above, since averaged galaxy number counts should not vary drasti-
example, by modifying the loss function appropriately, we might cally as a function of stellar mass.
require the bin-to-bin variations in the SMF to be bounded from
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