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Overview

We use deep Bayesian convolutional neural networks to achieve
state-of-the-art predictions on the salient features of gravitational lenses, along
with a full covariance matrix of uncertainties --providing a powerful tool for
next-generation dark matter surveys.

Background

One of the profound predictions of Einstein’s general theory of relativity,
gravitational lensing —the bending of light's path by sufficiently massive objects—
has become a powerful tool in modern observational cosmology. Images of
gravitational lenses have distinctive signatures, including a prominent ring-like
structure (see Fig. 1). These signatures enable us to infer the dominant features of
distant galaxies, probe the presence of dark matter, and obtain precise predictions
of the Hubble constant.

Unfortunately, the calculations required to infer these parameters are
computationally costly. Before next-generation sky surveys such as LSST, Euclid,
and WFIRST come online in the next 2-3 years, we need efficient, accurate tools
to predict the parameters of gravitational lenses.
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Figure 1: Images of gravitational lenses and
their associated parameters

Data

We have gathered a training set of 100,000 high-quality, labeled images of
gravitational lenses (Fig.1), generated using background galaxy images from
GalaxyZoo [1] and GREAT3 [7], We augment this data by (1) Adding Gaussian noise,
(2) Adding masked pixels, (3) Applying a point spread function characterizing the
beam used to capture the image, (4) Adding Poisson shot noise associated with the

intrinsic statistics of measuring a finite number of photons, (5) Translating the center of

the lens. The resulting images are 192x192 grayscale normalized images.

Methods

We train a deep convolutional neural network to predict the six parameters
specifying the singular ellipsoid density profile of a gravitational lens. The network
architecture is as follows:
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Figure 2: Model architecture

In physics, obaining uncertainties on our predictions is essential. As such, we
utilize recent techniques in Bayesian neural networks [1] to estimate both aleatoric
and epistemic uncertainties by introducing a variational distribution over our network
weights
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We then approximate this variational distribution by implementing the above
loss function, and tuning the dropout rate. This enables us to predict the full
covariance matrix of parameter values.
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Results and Discussion

After training our model for 40 epochs, we obtain the following errors on these
parameters, evaluated on a held-out test set of 15,000 images:
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State of the Art | 0.03  0.04 0.05 006 0.06 -
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We hope that with further training and hyperparameter tuning we will approach or
improve upon the state of the art [4].

We first assess the validity of the diagonal elements of our covariance matrix,
corresponding to the standard deviations on each parameter estimate. Confidence
intervals are shown in figure 3.
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Figure 3: Predicted parameter values and corresponding predicted uncertaintines. Orange
represents points within one standard deviation of true value, green within two, and purple
within three.

To assess the validity of the full covariance matrix, we generalize our confi-
dence intervals to the full six-dimensional gaussian and compute a chi-squared
statistic (see Figure 4) ——
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Figure 4: Histogram of chi-squared values of our model's prediction along with
bars defining where the 68%, 95%, and 99.7% confidence intervals should lie.
While our model does seem to be capturing the uncertainties, it is generally
overconfident in its predictions leading to large chi-squared values.

We examined a few examples of lenses were our
model has either a very high or very low level of certainty.
The images it is uncertain on are those where the lensed
image is small and there are two or fewer copies of the orig-
inal image - exactly the types of images where it is difficult
to define an ellipse. The images it has high certainty have
multiple extended copies of the source that trace out the
boundary of the ellipse nicely.

Figure 6: Representative lenses with low (top)
and high (bottom) predicted uncertainty.
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Finally, we visualized the weights of the first
convolutional layer, and performed t-SNE on the
representation of the seventh network layer. The
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Figure 7: (Left) First convolutional layer weights. -
(Right) t-SNE evaluated on layer 7 weights (color network seems to focus on elliptical shapes,

given by p.) which is what we would expect.
Future directions

* Explore concrete dropout [5] as a more flexible alternative to standard dropout for EM
approximation of the distribution on the weights
« Alter the base architecture to see if that allows for better model performance
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