Automatic Detection of Brain Aneurysms: segmenting CT scans using CNNs
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rupture is often fatal. CT scans can contain ’
hundreds of images so detection is a 3 Convolutional Resnets0 | conv 0.0018 = 270
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lengthy process; in an emergency setting
this delay may prove deadly. Automatic
detection with a prediction model would

be a valuable tool to address this. * Objective: pixel-wise labels
* Vary decoder, fine-tune encoder

* Training/test split of 51/6 patients
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* Random chance I0U:
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* UPerNet ~10x better than conv, PPM

* We are overlabeling aneurysm pixels

* Seek to minimize NLLL over 2 * In practice, would rather overdetect
classes (aneurysm, background) than miss aneurysm
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Figure 1: Schematic of aneurysm localization and bursting. Sources:

Shutterstock, Mayo Clinic Evaluation metric: Parameters: .

Semantic segmentation ~1000x better
DATASET — Xny| ° Adam,B;=0.9,a=0.02 than random at detecting aneurysms

«  DICOM images from 57 patients’ CT scan, xuy| - 20epochs, 500iterationseach . gjonificant resampling of aneurysms

Ground truth

~ : required to correct class imbalance
500 S|Ices eaCh 20 . ® ResNet50-Conv ® ResNet50-Conv ks . I qf t f th t |.
* Images were converted to 512 x 512 png ‘ o Restesomeu | ggq| @ Resvetorm nuture, camiurthertune resampling

 Augmentation: flips, rotations, crops | . level, loss function weights
* Class imbalance in original data: only ~1% ' : * More data to prevent overfitting
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. Images Wlth aneurysm resamp|ed 40x Figure 2: Training error (negative loss likelihood) and training aneurysm IOU over 20 epochs of training - .

across three architectures of interest Thanks to Yeom Lab for providing the labelled data, and Aarti Bagul

for project guidance.
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Convolutional Encoder-Decoder

Pooling Indices
Conv + Batch Normalisation + ReLU
Pooling [l Upsampling Softmax




