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* Fully connected NN
Training Set Train-Dev Set performed the best (Table 1)

« Knee osteoarthritis (OA) is a leading cause of years lost
to disability worldwide [1] and is accelerated by
excessive mechanical loading.

« Using front view positions (y,
z) only gave similar results to
all positions (x, y, z), side
view (x, z) only was less
accurate (Table 1)
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* The knee adduction moment (KAM) is a measure of load
estimated from using multi-body dynamics (Figure 1).

Flattened Input Layer
* Gait modifications reduce KAM and joint pain [2] but
require a personalization visit to a gait lab with expensive

motion capture cameras and forceplates.

Predicted KAM Peak

Hidden Layer 1

*  Accuracy is higher if the
model trained on the person’s
data before (train-dev) than if
it had never trained on a
person’s data (test) (Figure 6)
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it an inexpensive alternative to motion capture [3]. using forces and limb
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Output Layer * Lower model confidence

Our goal is to predict the peak knee adduction moment using
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Figure 4: Diagram of best model (2-layer fully connected neural network) Figure 6: Predicted KAM vs. true KAM for all four down positions (Figure 7)

data splits.
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Table 1: Results of different models and input variations
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3D motion capture marker positions relative to the center of the PSIS markers during Velocities, Accelerations)
the first half of the gait cycle (8 times points) during varying gait modifications were Side View Only (Positions,
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network predicts KAM KAM using video data
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