

Unrestricted Adversarial Defending Deep Neural Network Qiwen Wang, Xinshuo Zhang

{qwang26, zxs96}@stanford.edu

INTRODUCTION

- ➤ adversarial perturbations: perturbations designed specially to fool the model into making blatant errors.
- ➤ adversarial attack goal: add a tiny perturbation to the image, which lead to misjudgment of a particular model yet keep the picture classifiable to human

➤ our model: combine several image processing methods and the state-of-art adversarial defending methods to classify attacked digit images "6" and "7"

DATASET AND FEATURES

- ➤ Image: subset of "6" and "7" from MNIST handwritten dataset, colored in black and white.
- ➤ Image size: 28*28 pixels
- ➤ Dataset size:training: about 12000 clean images, apply Gaussian smooth and median filter respectively, thus making 36000 training images; testing: 2000 images attacked by different methods, including JSMA and FGSM, etc.

DEEP LEARNING APPROACH

- 1. Apply image processing techniques to mitigate the attacking effect
- Train multiple state-of-art adversarial defending algorithms based on CNN with processed images
- Use logits from defending model results as features to train an integrated MLP model
- Images with known and unknown attacks as input to evaluate the model (A1) Unrestricted Adversarial Defending Model Training Archit

Result

➤ Our defending model **outperforms** the baseline, and performs better than most of the intermediate

trained models.

preprocess	attack	Acc	Precision	Recall	F1
none	none	0.998	0.996	1	0.998
	spatial_grid	0.51	0.522	0.722	0.606
	fgsm	0.985	0.99	0.981	0.986
	jsma	0.998	0.998	0.999	0.998
gaussian	none	0.999	0.999	1	0.999
	spatial_grid	0.519	0.529	0.734	0.605
	fgsm	0.98	0.99	0.972	0.981
	jsma	0.999	0.999	1	0.999
squeeze	none	0.998	0.998	0.999	0.998
	spatial_grid	0.5125	0.525	0.715	0.605
	fgsm	0.99	0.993	0.988	0.991
	jsma	0.998	0.998	0.999	0.996

first attacked the and applied image processing methods

Discussion

- ➤ Our algorithm performs well on other unknown attacks.
- ➤ Learning the classification result from multiple defend method makes the model more robust on unknown attacks
- ➤ Applying feature squeezing significantly increases the classification accuracy (emphasize on img feature)
- ➤ Gaussian Filter mitigate the accuracy. Though it defends the gradient based attack, image features are hard to capture
- ➤ Performance for the spatial attack is the worst. Because we trained on spatially centered images.

Figure 3: spatial

Future Work

- ➤ Apply more image processing and defending methods, such as image restoration, GAN
- ➤ Generalize to datasets with multi-label and multi-channel (ImageNet. distinguishing birds and bikes, etc)

