Parcel Package Classifier for Automated Conveyor System

Hodges Haywood

hhaywood@standford.edu

https://www.youtube.com/watch?v=kyb9ANNf7V4&feature=youtu.be&hd=1

Introduction

- Everyday, logistics companies like UPS and FedEx lose millions of dollars as a result of damaged packages
- · As packages flow through distribution centers with miles of conveyor belts, they are at risk of becoming crushed, breached with holes, or opened
- These packages might contain vital medicines or hazardous materials
- · Currently the system is monitored manually increasing the possibility for errors and limits scope
 - Humans make mistakes, can't see everywhere and everything
- We propose:
 - Build a neural network classification system that can detect whether a package is damaged
 - · Connect camera to neural network (future work)
 - · Place cameras strategically throughout the system (future work)

- · Conveyor system comprised of many miles of conveyor belts
- Packages can become damaged at any point
- · Place cameras connected to neural network to detect damaged packages

Dataset and Preprocessing

- Baseline images: 128x128 RGB images of parcel boxes.
- · Data set collected from various sources, including google search and photos from UPS distribution facility
- · 2000 RGB normalized training images
- · 200 RGB normalized validation images
- · 200 RGB normalized test images

Examples of damaged packaging

Examples of un-damaged packaging

Deep Learning Methods

- · Five neural network architectures were trained and tested on the data
- Loss Function: $J = -\sum_{i=1}^{N} y_i \log(h_\theta(x_i)) + (1-y_i) \log(1-h_\theta(x_i))$
- Employed visualization on baseline models to gain insight on activations of the lavers

- **Hyperparameters** explored include:
 - Epochs
 - Learning Rate
 - Dropout
 - Augmentation
 - Transfer

Results & Discussion

Model	Learn Rate	Epochs	Training Loss	Validation Loss	Training Accuracy	Validation Accuracy	Test Accuracy	Transfer Learning
Baseline Model	0.0001	30	.015	1.02	99.5%	80.5%	25%	No
Baseline plus Augmentation and Dropout	0.0001	30	0.28	0.42	87%	83%	35%	No
VGG16	0.0001	30.	0.36	0.37	84%	88%	48%	Yes
ResNet50	0.0001	60	0.25	2.17	89%	50%	50%	Yes
Inceptionv3	0.0001	30	0.50	2.98	77%	67%	50%	Yes

Visualization of Layers

Baseline model visualization shows no specific region activations

Conclusions and Future Work

Conclusions

- · Models perform well and training and validation but not
- · Models showed high variance between validation and test data
- · Dropout seemed to help prevent overfitting
- · Need more data and better preprocessing
- · There is much room for improvement of performance of models on the type of data that was tested. This was expected.
- · Using bounding boxes around specific regions of damage might help with activations.

Future Work

- · More preprocessing of images by putting bounding boxes around zones of damage and labeling them.
- Collect much more data
- · Explore applications to other practical areas such as food quality.

References

- 1. Mattew D. Zeiler, Rob Fergus, 2013, Visualizing and **Understanding Convolutional Networks**
- 2. Martin Rajchl, Matthew C. H. Lee, Ozan Oktay et al., 2016, DeepCut: Object Segmentation from Bounding Box Annotations using Convolutional Neural Networks