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Deep Learning Approac sults & Discussion

Cerebrovascular disorders are an Because convolutional neural networks (CNNs) are conventionally Logistic  regression Table 1. Comparative Model Performance
important cause of mortality and successful in image classification, we tried testing CNNs on our performed Train Acc Dev/Test Acc
long-term morbidity in the pediatric dataset in addition to our baseline logistic regression model. surprisingly well as a LR (all images) 0.98431 0.91765
population. Accurate diagnosis is Because of our relatively underpowered dataset, we decided to baseline. We saw LR (only MRA images) 1 0.9
essential to selecting appropriate bring in pretrained models through ResNet18 and ResNet50, which ~  that adding in all the ©5230 Torch Vision Example 0.906 0827
treatment. Assessment of suspected were trained on ImageNet. images in the ResNet18 0.969 1
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actually improved our logistic regression model, supporting the idea that a
pretrained network would improve our model. We can also clearly see that the
ResNet models outperformed any other. Below, we tried tuning the learning rate to

T Ef reeosems compare performance among hyperparameters as well as across models.
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Magnetic Resonance Angiogram
(MRA) and abnormal MRA. Figure 1. MRA Scan
However, accurate pediatric MRA

interpretation requires years of
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Figure 3. ResNet Training Results

ResNet50 Training Metrics by Learning Rate
2

ResNet18 Training Metrics by Learning Rate
18

Problem Statement
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We can see there is much promise in the pursuit of automated expected. We also see o » L
diagnostic classification of blood vessel abnormalities in MRA that ResNet18 seems

scans. Much as we anticipated, we saw an improvement in the to generally ﬁﬂjﬁ i
performance of our model when we could augment the training outperform ResNet50 R
dataset, whether by including non-MRA scans or using a in this binary
pretrained model. s Ts e T e e 1234 s s 78 9w

classification task. Epoch froen
Future Work

tools that provide real-time diagnostic support and
guide clinical decision-making. Use it to classify
cerebral vessels and segmenting cerebrovascular
structures. No studies yet have broached automated
diagnostic classification of pediatric MRA.

Dataset & Features

Dataset of 278 patients with pediatric MRA images
from 2011 to 2017, split into 227 normal cases and 51
abnormal cases, specifically Moyamoya disease. The
number of cross sections in the MRA scans varies

Accuracy

across patients (248 or 256). The database also
includes images from other types of structural
scanners of the brain, apart from MRA images.

The image appears black-and-white but consists of
three color channels. The dimensions of each image is
(512, 512). We preprocessed the data by compressing
the images into either (64, 64) or (256, 256) images,
and further flattened them for our logistic regression
model.

This study is limited by its retrospective nature and modest sample
size. Future work will include a prospective study with a

heterogeneous patient population to conduct further validation of

this model for its integration into clinical practice.

We are also looking to develop a model to label abnormal MRA
dataset for five of the most important disease classes. Apply 2D and
3D deep learning architectures (ResNet and DenseNet) to conduct
multi-label binary classification of desired outcomes.
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