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INTRODUCTION

= Type-B Aortic Dissection: A tear in the intima
of the aorta splits the vessel into two channels

= Management: Periodic computed tomography
(CT) scans and high risk surgery if axial aortic
diameter is expanding

= Challenge: Many suffer fatal aortic rupture in
between CTs. Segmentation of the aorta into true
and false lumens can help predict need for surgery.
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Figure 1: Left: intimal tear leading to formation of two lumina,

Middle: axial view of dissected aorta, Right: aortic rupture
PROBLEM STATEMENT

= Input: Axial sequence of Grayscale CT
cross-section images.

= Output: Pixel-wise segmentation into 3 classes:
True Lumen, False Lumen, Background

= Goal: Maximize similarity between manually
segmented ground truth and output of model

DATASET

- Dataset: 24 CT aortograms, 800 Grayscale axial
images (256x256) per study, Corresponding ground
truths (256x256).

= Pre-processing: Normalize CT images, convert
ground truth images to one-hot vector, random
sampling along Z and across studies

Figure 2: L: CT cross section image, R: ground truth
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« U-Net: Learning Rate = le-4, Batch Size = 16, Train/Dev/Test Split: 72, 14, 14, Parameters: 3.1e7
« LinkNet: Learning Rate = 5e-4, Batch Size = 20, Train/Dev/Test Split: 72, 14, 14, Parameters: 1.1e7

Combined loss (combining categorical cross entropy and Dice coefficient):
L = wyCCE +wi(1 — DE);UNet : (wy, w:) = (0.5,0.5); LinkNet : (wy, wr) = (1.0,0)

SuMMARY OF KEY RESULTS

Performance on original studies is excellent. Novel studies contain

Model Train Dev Test Novel

U-net 0.93 0.89 0.89 0.72
Link-net 0.96 0.91 0.91 0.73

Table 1: Mean DICE Score
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unforeseen geometries: annular separation of lumina. Generalization
less than satisfactory. Human error on novel studies is low due to
availability of Z-information during manual segmentation of study.

Discussion

Figure 3: Top: UNet Examples, (L) Novel dataset, (R) Original
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Dataset; Bottom: LinkNet training sequence example

= Adam Optimization along with Dropout and L2
Regularization to reduce over-fitting
= Dice helps speed up training compared to CCE
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Figure 4: Learning curves for (L) U-Net and (R) LinkNet

FuTurRE WORK

= Segment scans in both sagittal and coronal planes
- Data augmentation to decrease over-fitting
« Compare conv-LSTM and 3D-CNN approaches

= Aortic Dissection background: Nienaber, C. A.
et al., Aortic Dissection, Nature Reviews
Disease Primers, 2, 16053 (2016)

= Competing pre-print: Li, J. et al., Multi-Task
Deep Convolutional Neural Network for the
Segmentation of Type B Aortic Dissection.




