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Problem and motivation

Independent Component Analysis (ICA) is an interesting
problem for diverse applications. Assuming that we have
n sensors, and that n mixed sources have been recorded,
we would like to separate the individual independent
sources from the n recorded mixtures. Independent
sources should have minimal correlation. One possible
application, is to separate the voices from several people
using a microphone array (Fig. 1), or separating signals in
an array of EEG sensors coming from different regions of
the brain. ICA is sometimes also called blind source
separation.
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Fig. 1: Recording mixed signals with a microphone array (from Karczweski et. Al. 2013)
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Analysis

We call y;(t) the m original (and unknown) signals (at time
t). Our task is to recover them from the recorded m
signals x;(t). We assume that the mixing process is linear,
that is, the vector of signals y;(t) is multiplied by a matrix
of weights M yielding the recorded signals.
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Fig. 2: The original signals are mixed linearly by the matrix of weights M.

In mathematical terms, we have n time series of linear
mixtures x;(7), T being the timeframe. If we multiply the
time series by the un-mixing matrix W, we recover an
estimation of the independent components y;(7). The
mixing matrix M mixes the independent components and
provides an estimate of the recordings X;(z). Both M and
W are unknown. M is the physical process producing the
mixture, W the matrix we need to find in order to
implement source separation. We want the sum of
squared differences of the recordings x;(z) and the
reconstructed recordings to be minimal ¥; (7).
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Fig. 3: Unmixing the original signals followed by mixing provides an estimation of the error.
As stated the problem seems ill-posed, since any
invertible matrix M and its inverse W would provide a
perfect reconstruction of the recorded inputs. Therefore,
we introduce constraints to limit the kind of acceptable
mixing and unmixing matrices M and W.

Smoothness constraint

The proposed approach is to take each reconstructed
time series y;(7) and predict the next point k + 1 using
the previous k data points. The prediction is done with a
neural network for each independent component (we
have n neural networks, one for each time series y;(7)).
The prediction errors are added to the squared
differences shown in the diagram. That is, the final
network consists of one network for each y;(7) and the
unmixing-mixing process shown above (see diagram),
together with a computation of the matrix of cross-
correlations of the y;(t)’s. We initialize W and M
randomly and train to minimize the error function. The
training process should find the best neural networks for
predicting the independent components and, at the same
time, the matrices M and W (notice that the diagram
represents a composite network). Not every combination
of W and its inverse can work, because the predictability
of the reconstructed components y;(z) is being
maximized at the same time. The intuition is that
regulating the capacity of the neural networks we can
nudge the system to prefer uncorrelated y;(t)’s.

Fig. 4: The composite network for unmixing the recorded signals. Smooth and uncorrelated y’s
are preferred using the total error function..

Datasets and Evaluation
The network has been tested using self-generated
synthetic signals and audio signals. The prediction
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networks have been limited to perceptron linear units,
which corresponds to Predictive Linear Coding (used in
telephony). The current network can separate such
synthetic sources very well after a few minutes of
computation. The figure below shows the result of an
experiment with two audio signals: the first row shows a
recording of voice and applause, the middle row the
mixed signals, and the last row the reconstructed signals.

Fig. 4: An experiment with two audio signals. Upper row: original signals. Middle row: mixed
signals. Lowest row: reconstructed signals.
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