This project implements a deep Visual Semantic Embedding model for mobile

devices. Such models enable usage of novel image queries for image tagging and
retrieval. These models also help offset the problem: rciated with insufficient
labeled samples for the ever exploding image categories!

A lightweight mobile architecture SqueezeNet 1.1 [2] is used to train 2 model to
associate images classes with pre-trained fastText word vectors for the corresponding
class labels. Semantic information from the word vectors (embeddings) augment the
classification model for many interesting applications as demonstrated in this project.
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AWA2: Benchmark dataset for transfer ]Lammg algorithms, such as zero-shot
learning. 37322 images of 50 animal classes, 13 GB in size!

Train/valid split: 90:10 of 40 classes (30337 images)
Test set:10 classes (6985 images) are kept aside for zero-shot learning tests.
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Data Augmentation techniques help models
generalize better!

Pixel and coordinate transforms, such as flip, rotate,
warp, zoom, lighting transforms are applied in an
optimized way using fastai library [4]
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Pre-trained word vectors (300 dimensional)
trained using fastText are used: 1 million
word vectors trained on Wikipedia 2017,
UMBC web-base corpus and statmt.org news
dataset (16B tokens).
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emantic embedding model

net-level accuracy with 50 fewer parameters and <1mb model size.
the good, the bad and the ugly.

github.com/ stai
m,u\, 2018 \Dhcxplde pproach to Neural Network Hyper-Parameters: Part 1- Learning Rate,
Momentum and Weight Decay
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stage 1
Classification
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Stage 2
Regreasion

Stage I: A multi-class classification model using Squeezenet 1.1 [2] model architecture
backbone with a custom head (comprising of linear layers) is trained for accuracy.
Loss function: Cross entropy loss is used to measure model performance.

Stage II: A regression model is used to train 300d image feature vectors (obtained by
discarding the softmax layers) with pre-trained fastText word vectors.

Loss function: The regression model is trained to minimize the cosine loss between
fastText embeddings and image feature vectors. £
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Additionally, nmslib, a cross-platform similarity search
library, is used for nearest neighbor (kNN) searches.
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‘Training Process: Transfer learning is used to retrain Squeezenet 1.1 [2] model pre-
trained on Imagenet. 1 cycle policy [5] is used to train network faster.

Hyperparameter Search and tuning

1. Learning rate(®): Mock training is done with varying & to determine the optimum
value 2. Number of frozen layers (/): At cach stage, /fis varied and model is fine tuned
3. Momentum:(0.85, 0.95) 4. Weight decay:0.01, Opu‘mizndon:Adam(?;l=0.9,§2:ﬂ.99)

Model Performance fodepl
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Observation: Adding a batch normalization layer in the end helped train the network
much faster!
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Model comparison with baseline

stage 1 Total Parameters _Size on Disk(MB) _ Epochs _Accuracy
Resnet34 21979164 (100%) 84 (100%) 10 94.66%
Squeezenet 1.1 1416988 (6.45%)  6(7.14%) 8 89.05%
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stage 2 Total Parameters __Size on Disk(MB) _Epochs _Accuracy _ Accuracy _Accuracy _ Accuracy
Resnet3d 21967044 84 (100%) 8 7452%  8687%  89.82%  9317%
Squeezenet 1.1 1404868 6 (7.14%) 8 s0GO%  8909%  9124%  94.30%
zero-Shot Results (Stage 2)  TopS Accuracy ___Top10 Accuracy
Resnet3d
Squeezenet 1.1 39.13% 5331%

PCA Analysis: PCA analysis after epoch-2 and epoch-8 for a sub-sample, 4-classes.
With more iterations, image vectors begin converging to their fastText equivalents.

Image to Image: k Nearest neighbor
search in model predictions using model
output for an image.[Zero-shot eg on right]
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Image to Text: Top k labels for an image based on similarity of its
model output to the fastText embeddings for various class labels

Text to Image: k Nearest neighbor
search in model predictions using
fastText embedding for provided text

['gorilla’, ‘chinpanzee', 'elephant’, ‘zebra', ‘hippopotamus’, 'giraffe'],
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Conclusio

This project demonstrates that it is feasible to build lightweight Visual-Semantic
models for mobile applications while meeting acceptable performance threshold.
Applications such as gallery photo search, tag generation, cataloging new products
(zero-shot learning) can make use of such models,

Top-1 Accuracy: In case of class imbalance,
average per class top-1 accuracy seems to be a
more appropriate choice as described in [3]
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Future work involves (1) Improving Zero-shot learning performance of
Squeezenetl.1 model (2) Exploring techniques to deal with class imbalance issue (3)
Extending the concept of Semantic Embeddings to Audio datasets.




