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Introduction

Data Processing

Results & Discussion

The amount of observational astronomical data collected is increasing
exponentially, as we build larger and more powerful telescopes. For
example, the Large Synoptic Survey Telescope (LSST) is expected to
generate up to 40 TB of data per night of observation after going live in
2022.
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Figure 1: Artist’s rendering of the
completed LSST.

Figure 2: LSST sky coverage map.

To deal with this high data volume, there is a need for efficient
and accurate automated data processing techniques. In this project,
we address the problem of automated object classification based on
photometric time-series data (measurements of brightness), especially
for variable and transient sources (objects whose brightnesses change
over time).

Dataset & Features

Our dataset comes from the PLAsTiCC (Photometric LSST Astronomical
Time-Series Classification Challenge) Kaggle competition. We use the
labeled training dataset containing 7848 simulated objects, and each
object has the following features:

= For a given Modified Julian Date mjd, and color channel passband,
= brightness f1lux, and its estimated error f1ux_err,
= whether a flux change was detected relative to the background
“template” image detected.

= Sky location: ra, decl, gal_1,gal_b

= Distance from Earth: hostgal_photoz, hostgal_specz, distmod

= Error associated with photometric redshift: hostgal_photoz_err

= “Wide-Fast-Deep” (WFD) or “Deep Drilling Fields” (DDF) survey: ddf
= Extinction due to galactic dust: mwebv

= The target class, obfuscated, with 14 possible classes: target

1. Observations are performed in only one passband at a time, so we
linearly interpolate £1ux for the other 5 missing passbands at every
measurement time.

2. Ignoring irregular intervals, we map data onto regular time steps ¢.
3. Weresize the data to length 7" = 352, using linear interpolation.
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Figure 3: £1ux data transformation: a) Original data, with irregular intervals and length.
b) Final input data: interpolated, pivoted by channel, and normalized to length 7" = 352.

In addition to the 10 provided, we derive 6 more metadata features from
the £1ux time series: min, max, mean, stdev, median, and skew. We finally
scale all 16 metadata features to zero mean and unit variance.

Models

We trained two NN architectures, 1D convolutional and recurrent LSTM,
tolearnthe time-series data. We then concatenated its output and the 16
metadata features, before a fully connected output layer with 14 nodes
and softmax activation.

= 1D CNN: Inspired by the VGG architecture, every CONV layer has
filter size 3 and same padding, and is followed by BatchNorm, ReLU,
and MaxPool (filter size 2, stride 2).
INPUT (352 x 6) — CONV16 (176 x 16) — CONV32 (88 x 32) —
CONV32 (44 x 32) — CONV32 (22 x 32) — CONV32 (11 x 32) —
FLATTEN (352)

= LSTM: single-layer uni-directional LSTM with 32 hidden nodes. The
output is from the final time-step 7" = 352.

Our evaluation metric is accuracy, weighted so that all classes are equally
important. Our loss function is weighted cross-entropy loss, optimized
using Adam. We trained each model on 5,886 examples for 46 epochs
with a mini-batch size of 128. The test set consists of 1,962 examples.

Model | # Trainable Params Train Accuracy Test Accuracy
Metadata only 238 55.07% 48.40%
1D CNN only 16,414 66.26% 55.11%
LSTM only 5,582 48.77% 35.25%
CNN + Metadata 16,638 78.61% 70.09%
LSTM + Metadata 5,806 72.29% 51.58%

Overall, our models performed quite well, far exceeding the metadata-
only logistic regression baseline of 48.4% accuracy. There is significant
information in the time-series data, as evinced by the accuracy of the
CNN-only model. That information differs from what the metadata
encodes, as CNN-only performs better than metadata-only on some
classes (15, 53, 67) and worse on other classes (64, 95).
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Figure 4: Recall matrix, showing the fraction of objects of class i correctly labeled

Future Work

= Improve model regularization, especially via data augmentation based
on the measurement errors flux_err and hostgal_photoz_err.

= Create more hand-engineered metadata features based on the f1ux
data, especially features that represent periodicity, which is lost
during step 2 of data processing.

= Explore other neural network architectures, such as ResNets,
Inception, and multi-layer RNNs.
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