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Abstract

The aim of this project is, given a musical score, to
accurately predict which composer wrote it. We
believed that this project will be an interesting
experiment in audio classification and will potentially
demonstrate where composers were influenced by
other composers; at the same time, we believe that
this project's importance lies also in its easy
generalizability to other musical recognition tasks.

Here, we built an LSTM and a CNN that determine
who composed a piece. The input is a section of a
score, extracted from a midi file, while the output is a
specific composer.

Based on our results, the CNN outperformed both the
LSTM and the baseline. The LSTM’s overall weak
performance is likely a result of an issue with the
processing of input data.

Dataset and Features

Our dataset is a collection of 450 classical
compositions represented as midi files, hand curated
from http://www.midiworld.com/classic.htm

v A sample midi file. While audio files
potentially include mistakes or performers”
interpretations, midi files objectively
record instructions for how a piece should
be played as the composer instructed. This
encoding is visualized and interpreted as
shown here.

To standardize our input, we extracted the piano roll,
which was a representation of the piece as though
played from a single piano, from each piece and split
up each piano roll into evenly sized chunks (parameter
x) so that each generated sample was now represented
as a matrix of size (128,x). Each row represents a
note; each column is a time slice in which a note is
recorded as played.

Features therefore include the the duration and pitch
of each note. The piano roll implementation was
chosen to standardize across multiple instruments.
Chunk size was chosen to standardize piece length.
These were necessary to accurately represent the
important aspects of each piece while standardizing
them with respect to other pieces.

LSTM

We built a 2-4 layer LSTM to classify our input,
according to the following standard equations for
activation, output, and gate updates.
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We tuned hyperparameters
including batch size,
learning rate, dropout for
each included layer, L.2
regularization, and how
many layers to include. We
also tuned parameters for
piano roll cutoff size,
sliding window size,
and the frequency of
samples per second. Below
are the results it achieved.
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Influenced by the work done by Lebar et al [1]
and Shi [2], we eventually implemented
supervised learning via scikit-learn, using both a
Multi-layer Perceptron model as well as an
Support Vector Classifier model, as our baseline.

We extracted features from each file including
* Tempo

» the number of time signature changes

* Resolution

*  Number of instruments in a piece

and other supplements that we thought could be
important. We did not normalize these feature
vectors. The test accuracy we achieved was
0.33.

Data Preprocessing (Split piano roll into even chunks)

Models and Results

CNN

Softmax

We implemented a sequential
CNN model using mainly 1D
convolutional layers. We
chose to use 1D convolution
because for music intuitively it
only makes sense to model
interactions along the time
axis. The architecture of this
model is inspired by the VGG
model, where the channels of
the layers starts at some power
of two and doubles every few
layers. In addition, the stride
of the convolutional and
pooling layers are both kept
small. To reduce overfitting,
we added a dropout layer
before the softmax layer. L2 [~
regularization is also added in "
all convolutional layers. We
defined our convolution as
follows and produced the
following loss.
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As shown, the CNN vastly outperformed the
LSTM, likely due to the higher quantity of
training examples.

Architecture
Human Expert (Estimate)
Baseline - - - - 033

N ~30,000 ~300 ~300 orn2 041

Train Examples Val Examples  Test Exaxmples  TrainAcc  Test Acc
B : : - >095

LsTM1 1414 313 354 02327 023
LsTM2 1514 379 335 02325 026

However, none of the methods, including the
baseline, were anywhere close to the accuracy of
the human expert, who we expect would get at
least a 95% accuracy on this task (and there are
some humans who we believe should get 100%
accuracy on this task).

For the most part, we didn’t quite achieve the
performance that we were hoping throughout this
project. After some deliberation, we believe that the
primary reason for this was our treatment of the input.

The reason that the RNN did so poorly was because of
the format and management of the input via the piano
roll method, which looks like it created a sparse matrix
represented by notes (rows) over time (columns)
where a cell is 1 if a note is played at that time and 0
otherwise. This input is too empty for the model to
learn anything meaningful or specific about the input
itself, much less about the specifics differentiating
each of the composers with whom we dealt.

The CNN, on the other hand, did better than both the
LSTM and the baseline. This is likely due to the
difference in preprocessing that led to the increased
number of training examples.

Model Shortcomings and Future Research

After viewing our results, we think that one major
shortcoming of our project is that we don’t have
enough data samples from each composer to properly
train our model, even with data augmentation
techniques. Going forward, we would either collect
more midi files or convert existing audio files to midi
format to enhance our dataset. The next step would be
to enhance our input; from our results, it seems that
the piano roll representation by itself may be perhaps
too sparse to train our models to recognize the finer
differences between composers.
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