

Automatic Fetal Brain Segmentation for Prenatal MRI Screening

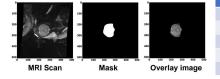
Cheng Chen and Pablo G. Diaz Hyland (cchen91, pablo98)@stanford.edu

Background

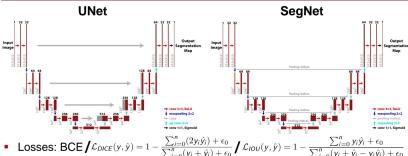
- Fetal imaging is the cornerstone of prenatal screening and diagnosis of congenital diseases.
- Despite the robust utility of MRI, interpreting fetal brain images represents a major challenge to radiologists and clinicians due to the rapidly changing architecture of the brain.
- Brain segmentation is the first step to identify abnormalities.

Dataset

- Data was provided by Prof. Kristen Yeom from the Stanford School of Medicine
- 690 fetal MRI scans in dicom format with masks in nifti format
- Each MRI scan contains ~ 15-35 slices in 512 × 512 resolution
- Approximately 10,000 images
- Division: 80%/10%/10% training/ dev/test sets



Model



Results

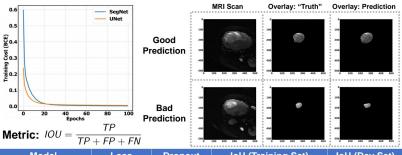
$\sum_{i=0}^{n} (y_i + \hat{y}_i) + \epsilon_0$ $\sum_{i=0}^{n} (y_i + \hat{y}_i - y_i \hat{y}_i) + \epsilon_0$

Discussion

- Variance problem persists despite regularization, model architecture change, loss function choice and early stopping.
- This may indicate that we are possibly limited by the amount of training data.
- Further observation shows that the "ground truth" is not accurate enough.

Future Work

- Apply data augmentation
- Obtain more accurate "ground truth" for training
- Apply other regularization techniques to reduce variance problem
- Implement other semantic segmentation algorithms such as DeepLab



Loss	Dropout	IoU (Training Set)	IoU (Dev Set)
BCE	0.5	0.91	0.77
BCE	0.5	0.94	0.78
IoU	0.5	0.90	0.71
BCE	0.5	0.91	0.74
BCE	N/A	0.96	0.73
	BCE BCE IoU BCE	BCE 0.5 BCE 0.5 IoU 0.5 BCE 0.5	BCE 0.5 0.91 BCE 0.5 0.94 IoU 0.5 0.90 BCE 0.5 0.91

Results are for 100 Epochs, with learning rate tuned for optimal performance on training set. Further study on early stopping does not show significant improvement

References

- [1] O. Ronneberger et al., International Conference on Medical Image Computing and Computer Assisted-Intervention, pp. 234-241, Springer,
- 2015
 [2] V. Badrinarayanan et al., IEEE Transactions on Pattern Analysis & Machine Intellinge, no. 12, pp. 2481-2495
 [3] L. Chen et al., IEEE Transactions on Problem Analysis & Machine Intelligence, Vol. 4, No. 4,
- pp. 834-848