Investigating Hate Speech and Abusive Language on Twitter with Deep Learning

Emiliano Rodrigues
CS230 - Fall 2018 - Stanford University

Motivation

Using Natural Language Processing (NLP) to categorize text extracts
into different groups is a very common practice in Deep Learning.
Sentiment Analysis is a field that has evolved a lot and gained a lot of
momentum over the past years with more processing power and
newer techniques to analyze text and keep track of the contribution
of meaning from each word to the sentence as a whole. In this
project, I explore the use of these techniques and apply it to a field
that has gained a lot of attention lately: hate speech on Twitter.

Problem Definition

The dataset I used consisted of 24,783 tweets. Each tweet was
reviewed by three different people, each of whom classified them as
containing hate speech, containing abusive language, or neither. The
most voted category for each tweet was the classification given to that
specific tweet. It is important to note that given the tweets were
classified by different people, what these individuals consider as hate
speech, abusive language and neither is subject to their own
interpretations of these terms.

After preprocessing tweets, which entails cleaning them from
unhelpful sentence markers, user handles and other Twitter-specific
key words, like RT (Re-tweet), I move on to build models that are able
to classify the tweets as containing either hate speech, abusive
language or neither of these. Then, I explore what these Neural
Networks are doing behind the scenes: Why does the model classify a
specific sentence as hate speech? What key words from the extract
contribute the most to the classification? Can we trick the Neural
Network into classifying something as hate speech that is actually not?

1 extracted the relevant columns from the CSV file using Pandas, and
proceeded to perform basic preprocessing that involved removing
links and user handles (@person). Then, I used Keras's Tokenizer
class in order to remove all punctuation, numbers and make all the
text samples lowercase.

From that, I broke apart each sentence by the words they were
composed of, encoding each word using Keras Tokenizer's
$texts_to_sequences$. Each text extract was then padded at a
maximum of 25 words, which is the average word count for a tweet
containing 140 characters, which used to be the platform's word limit
before being recently increased to 280 characters earlier this year.
Since our dataset doesn't contain any tweet that recent, this was not a
problem and didn't incur in lost data.

Approaches

In this project, I implemented three different Neural Network
structures in order to see how they compare and which one would be
most appropriate for this specific classification task. All models were
trained with 300d GloVe embeddings. The first model was a
Recurrent Neural Network, where I used a Bidirectional LSTM Layer.
The second one consisted of a Convolutional Neural Network, where I
used a Convolutional 1-dimensional layer, as well as a Max Pooling
layer. Finally, I implemented a model mixing the Convolutional Layer
with the Bidirectional LSTM Layer.

Data Analysis

Modeling

CNN with ConviD Layer

RNN with Bi-LSTM Layer, NN with ConviD Layer + Bi-LSTM
Early Stopping activated Layer

Discussion

Looking at the confusion matrix for the CNN, we see that the model is very
successful at classifying tweets marked as abusive language, with a 96%
accuracy overall for this category, while it does poorly for tweets classified as
hate speech, classifying only 24% of these correctly, and mistakenly labeling
them as abusive language instead. This is likely due to the similarities
pointed out earlier between abusive language and hate speech, which seem
to have very similar vocabulary frequencies. When it comes to tweets
classified as neither hate speech nor abusive language, the model also
performs well and is able to classify 84% of these correctly.

Looking at the confusion matrix for the RNN, this model performed worse
than the CNN for both the abusive language and the neither classes, but was
better by 10% compared to the CNN in classifying tweets that were labeled
as hate speech.

The RNN with Early Stopping performed better than the previous two
models when classifying tweets as neither, and performed just as well as the
non-early stopping RNN for abusive tweets, but performed much worse than
the two previous models for tweets classified as hate speech, only classifying
16% of these correctly.

Finally, the R + C NN performed better than the CNN, with a higher
accuracy for tweets classified as hate speech (31% vs. 24%), but the same
accuracy percentage in testing for the neither category (84%). Despite fairly
good accuracy distributions for the three classes compared to the previous
models, it didn't outperform the first RNN trained for 30 epochs, that had
better accuracies for hate speech and abusive language labeled tweets.

It is interesting to look at the sentences that were miss-classified by the CNN
model in the test set, so I went ahead and did that. For example, these are
two samples that were cl d as abusive 1 but were labeled
originally as hate speech: "gucci mane in jail and dropping mixtapes every
month and you hoes cant even text back", "im feeling pretty fuckin ghetto
smh". In these examples and personally, I believe these sentences would be
better classified as abusive/offensive language as the model predicted, but
that is not what they were labeled as.

Challenges & Future Work

e Size of Dataset — there were not enough hate speech samples, which ended
up compromising how well the model could learn the patterns for these.

e Number of epochs trained for — I trained the models for 30 epochs but they
could’ve been trained for much longer.

e Testing deeper networks — The networks I built were fairly straightforward
in their composition, but I wonder if more complex structures would help at
all.

e Binary vs. ternary classification — It would be interesting to see how well

the model would learn the hate speech patterns if there were no abusive

language category.

Choice of Vector Embeddings — Could try fastText

