Deep Learning to predict extreme wind loads on buildings

Giacomo Lamberti & Will McCloskey, {giacomol, mcclow12}@stanford.edu

Stanford University - CS 230: Deep Learning

TENAN TO THE TENAN THE TENAN TO THE TENAN TH

Motivation & objective

Motivation: Glazed panels, covering high-rise building's external facades, can be subjected to extreme pressure events due to wind, which can be critical for these components.

Goal: enable efficient and reliable computation of extreme pressure occurring on high-rise buildings' external facades.

Wind tunnel measurements

Several experiment on a high-rise building model have been performed in the wind tunnel of Politecnico di Milano [1]:

 outcome: 300s time-series of pressure (p) in critical regions, i.e. near corners and edges (tiles A-B), at different wind directions.

RANS simulations

Reynolds-averaged Navier-Stokes (RANS) simulations, solve the time-averaged Navier-Stokes equations, while modeling turbulence transport [2]:

- outcome: mean pressure (P) and velocity (U); turbulence kinetic energy (k), dissipation rate (ϵ) and viscosity (ν_t) ,
- \bullet pros: relatively low computational cost,
- cons: need of model to retrieve pressure fluctuations over time.

Construct 8 quantities from RANS variables [3]:

Features: $\mathbf{x} = \mathbf{x}(P, U, k, \epsilon, \nu_t, \nabla P, \nabla U)$

Complete dataset

- 224 examples on tile A, 223 examples on tile B.
- 8 wind directions: 0°, 10°, 20°, 170°, 180°, 190°, 200°, 260°.

Total: 3,584 examples

	Train	Dev	Test
Tile A	$0^{\circ}, 10^{\circ}, 170^{\circ}, 180^{\circ}, 260^{\circ}$	190°	20°
Tile B	0°, 10°, 170°, 180°, 190°	0°, 180°, 260°	20°

Additional test set: data around the whole facade at $0-180^\circ$, are available from a high-fidelity simulation.

Models

Artificial neural network (ANN): Convolutional neural network (CNN):

 Each pressure tile is treated as a 2D example with 224 pixel values.

Results

Hyper-parameters tuning: Hyper-parameter ANN CNN # epochs 300 1,000 # hidden layers 5 1 # hidden units activation reLи reLu learning rate 0.01 0.01 dropout None None batch-normalization None None

Evaluation metric: $\frac{\Sigma_i |y_i - y_{pred,i}|}{\Sigma_i |y_i|}$

number of filters

filter size

Set	ANN	CNN
Train	4.8%	21.5%
Dev	1.7%	8.8%
Test : tiles A-B at 20°	10.0%	24.6%
Test : whole facade $0 - 180^{\circ}$	3.9%	11.5%

Conclusions and future work

14

- The ANN seems to perform better in extrapolating to different regions of the building, and different wind directions.
- Future work will focus on testing the models in different geometries.

References

- L. Amerio, Experimental high resolution analysis of the pressure peaks on a building sca model façades.
 - PhD thesis, Politecnico di Milano, 2018. [2] S. B. Pope, "Turbulent flows," 2001.
- [3] J. Ling and J. Templeton, "Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged navier stokes uncertainty," *Physics of Fluids*, vol. 27,