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Introduction

» Communication system:

Problem Descrintion
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Given a code rate 7, design a pair of mappings from .-

bit messages to length &/ codewords, and then from

Results and Analvsis

Case A — comparing (1) conventional polar decoder, (2) DNN decoders learned at
different noise level, (3) DNN decoder as a 2*-class classifier.
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Case B — compared with (1) existing convolutional codes, (2) convolutional encoder

model a priori.
Case B:
Dataset -

16

Encoder: 2-layer GRU with 20 hidden units

* Messages are randomly generated length-k
binary sequences. Channel is random
realizations of given classes of channel.

» For AWGN channel, white Gaussian noise ,,
is added to the signal.

« For nonlinear channel, signal experiences
inter-symbol interference and a nonlinear
distortion apart from Gaussian noise.
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k 8 8
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Case B Train set x 1

Decoder: 2-layer bidirectional GRU with 100 units

Test sets x 26

Samples 1,000,000
k 100 {100, 200}
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Conclusions

+ RNN decoder, (3) longer block length, (4) direct transmission wo/ channel coding.

Key insights:

(1) Gain of RNN in
lower SNR regime.

(2) Directly
generalizes to
longer block
without much loss.

 Design novel channel coding schemes/decoding algorithms with deep learning.

 For fixed length short code, DNN decoder significantly outperforms
conventional ones when channel is not perfectly modeled.

« For long codes with unconstrained length, RNN decoder gets near-optimal

performance; jointly learned RNN encoder and decoder achieves lower error rate
compared to existing convolutional codes when channel is highly noisy.



